Skip to main content

Wnt Signaling Proteins Associate with the Nuclear Pore Complex: Implications for Cancer

  • Chapter
  • First Online:
Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

Several components of the Wnt signaling pathway have in recent years been linked to the nuclear pore complex. β-catenin, the primary transducer of Wnt signals from the plasma membrane to the nucleus, has been shown to transiently associate with different FG-repeat containing nucleoporins (Nups) and to translocate bidirectionally through pores of the nuclear envelope in a manner independent of classical transport receptors and the Ran GTPase. Two key regulators of β-catenin, IQGAP1 and APC, have also been reported to bind specific Nups or to locate at the nuclear pore complex. The interaction between these Wnt signaling proteins and different Nups may have functional implications beyond nuclear transport in cellular processes that include mitotic regulation, centrosome positioning and cell migration, nuclear envelope assembly/disassembly, and the DNA replication checkpoint. The broad implications of interactions between Wnt signaling proteins and Nups will be discussed in the context of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Adenomatous polyposis coli

IQGAP1:

IQ motif containing GTPase activating protein

MTOC:

Microtubule organizing center

NE:

Nuclear envelope

NES:

Nuclear export signal

NLS:

Nuclear localization signal

NPC:

Nuclear pore complex

NUP:

Nucleoporin

PML:

Promyelocytic leukemia

References

  1. Fodde R, Smits R, Clevers H (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1(1):55–67. doi:10.1038/35094067

    PubMed  CAS  Google Scholar 

  2. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17(1):45–51. doi:10.1016/j.gde.2006.12.007, S0959-437X(06)00241-3 [pii]

    PubMed  CAS  Google Scholar 

  3. Cadigan KM, Peifer M (2009) Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 1(2):a002881. doi:10.1101/cshperspect.a002881

    PubMed Central  PubMed  Google Scholar 

  4. Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A (2007) Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol 40(2):68–81. doi:10.1007/s00795-006-0352-5

    PubMed  Google Scholar 

  5. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. doi:10.1016/j.devcel.2009.06.016, S1534-5807(09)00257-3 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Henderson BR, Fagotto F (2002) The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep 3(9):834–839. doi:10.1093/embo-reports/kvf181, 3/9/834 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Krieghoff E, Behrens J, Mayr B (2006) Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci 119(Pt 7):1453–1463. doi:10.1242/jcs.02864, 119/7/1453 [pii]

    PubMed  CAS  Google Scholar 

  8. Brocardo M, Henderson BR (2008) APC shuttling to the membrane, nucleus and beyond. Trends Cell Biol 18(12):587–596. doi:10.1016/j.tcb.2008.09.002, S0962-8924(08)00238-9 [pii]

    PubMed  CAS  Google Scholar 

  9. Akiyama T, Kawasaki Y (2006) Wnt signalling and the actin cytoskeleton. Oncogene 25(57):7538–7544. doi:10.1038/sj.onc.1210063, 1210063 [pii]

    PubMed  CAS  Google Scholar 

  10. Lustig B, Behrens J (2003) The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 129(4):199–221. doi:10.1007/s00432-003-0431-0

    PubMed  CAS  Google Scholar 

  11. Jamieson C, Sharma M, Henderson BR (2011) Regulation of beta-catenin nuclear dynamics by GSK-3beta involves a LEF-1 positive feedback loop. Traffic 12(8):983–999. doi:10.1111/j.1600-0854.2011.01207.x

    PubMed  CAS  Google Scholar 

  12. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98(18):10356–10361. doi:10.1073/pnas.171610498, 98/18/10356 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275(5307):1787–1790

    PubMed  CAS  Google Scholar 

  14. Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11(7):490–501. doi:10.1038/nrm2928, nrm2928 [pii]

    PubMed  CAS  Google Scholar 

  15. Jamali T, Jamali Y, Mehrbod M, Mofrad MR (2011) Nuclear pore complex: biochemistry and biophysics of nucleocytoplasmic transport in health and disease. Int Rev Cell Mol Biol 287:233–286. doi:10.1016/B978-0-12-386043-9.00006-2, B978-0-12-386043-9.00006-2 [pii]

    PubMed  CAS  Google Scholar 

  16. Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318(5855):1412–1416. doi:10.1126/science.1142204, 318/5855/1412 [pii]

    PubMed  CAS  Google Scholar 

  17. Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2(10):a000562. doi:10.1101/cshperspect.a000562, cshperspect.a000562 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  18. D’Angelo MA, Hetzer MW (2008) Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18(10):456–466. doi:10.1016/j.tcb.2008.07.009, S0962-8924(08)00213-4 [pii]

    PubMed Central  PubMed  Google Scholar 

  19. Walde S, Thakar K, Hutten S, Spillner C, Nath A, Rothbauer U, Wiemann S, Kehlenbach RH (2012) The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner. Traffic 13(2):218–233. doi:10.1111/j.1600-0854.2011.01302.x

    PubMed  Google Scholar 

  20. Walde S, Kehlenbach RH (2010) The part and the whole: functions of nucleoporins in nucleocytoplasmic transport. Trends Cell Biol 20(8):461–469. doi:10.1016/j.tcb.2010.05.001, S0962-8924(10)00084-X [pii]

    PubMed  Google Scholar 

  21. Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8(3):195–208. doi:10.1038/nrm2114, nrm2114 [pii]

    PubMed  CAS  Google Scholar 

  22. Fagotto F, Gluck U, Gumbiner BM (1998) Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr Biol 8(4):181–190. doi:10.1016/S0960-9822(98)70082-X, S0960-9822(98)70082-X [pii]

    PubMed  CAS  Google Scholar 

  23. Yokoya F, Imamoto N, Tachibana T, Yoneda Y (1999) beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 10(4):1119–1131

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Eleftheriou A, Yoshida M, Henderson BR (2001) Nuclear export of human beta-catenin can occur independent of CRM1 and the adenomatous polyposis coli tumor suppressor. J Biol Chem 276(28):25883–25888. doi:10.1074/jbc.M102656200, M102656200 [pii]

    PubMed  CAS  Google Scholar 

  25. Wiechens N, Fagotto F (2001) CRM1- and Ran-independent nuclear export of beta-catenin. Curr Biol 11(1):18–27. doi:10.1016/S0960-9822(00)00045-2, S0960-9822(00)00045-2 [pii]

    PubMed  CAS  Google Scholar 

  26. Huber AH, Nelson WJ, Weis WI (1997) Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90(5):871–882. doi:10.1016/S0092-8674(00)80352-9, S0092-8674(00)80352-9 [pii]

    PubMed  CAS  Google Scholar 

  27. Xing Y, Takemaru K, Liu J, Berndt JD, Zheng JJ, Moon RT, Xu W (2008) Crystal structure of a full-length beta-catenin. Structure 16(3):478–487. doi:10.1016/j.str.2007.12.021, S0969-2126(08)00050-6 [pii]

    PubMed  CAS  Google Scholar 

  28. Tewari R, Bailes E, Bunting KA, Coates JC (2010) Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 20(8):470–481. doi:10.1016/j.tcb.2010.05.003, S0962-8924(10)00096-6 [pii]

    PubMed  CAS  Google Scholar 

  29. Lee SJ, Imamoto N, Sakai H, Nakagawa A, Kose S, Koike M, Yamamoto M, Kumasaka T, Yoneda Y, Tsukihara T (2000) The adoption of a twisted structure of importin-beta is essential for the protein-protein interaction required for nuclear transport. J Mol Biol 302(1):251–264. doi:10.1006/jmbi.2000.4055, S0022-2836(00)94055-5 [pii]

    PubMed  CAS  Google Scholar 

  30. Conti E, Muller CW, Stewart M (2006) Karyopherin flexibility in nucleocytoplasmic transport. Curr Opin Struct Biol 16(2):237–244. doi:10.1016/j.sbi.2006.03.010, S0959-440X(06)00048-0 [pii]

    PubMed  CAS  Google Scholar 

  31. Sharma M, Jamieson C, Johnson M, Molloy MP, Henderson BR (2012) Specific armadillo repeat sequences facilitate beta-catenin nuclear transport in live cells via direct binding to nucleoporins Nup62, Nup153, and RanBP2/Nup358. J Biol Chem 287(2):819–831. doi:10.1074/jbc.M111.299099, M111.299099 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Hamada M, Haeger A, Jeganathan KB, van Ree JH, Malureanu L, Walde S, Joseph J, Kehlenbach RH, van Deursen JM (2011) Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. J Cell Biol 194(4):597–612. doi:10.1083/jcb.201102018, jcb.201102018 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Franca-Koh J, Yeo M, Fraser E, Young N, Dale TC (2002) The regulation of glycogen synthase kinase-3 nuclear export by Frat/GBP. J Biol Chem 277(46):43844–43848. doi:10.1074/jbc.M207265200, M207265200 [pii]

    PubMed  CAS  Google Scholar 

  34. Wiechens N, Heinle K, Englmeier L, Schohl A, Fagotto F (2004) Nucleo-cytoplasmic shuttling of Axin, a negative regulator of the Wnt-beta-catenin Pathway. J Biol Chem 279(7):5263–5267. doi:10.1074/jbc.M307253200, M307253200 [pii]

    PubMed  CAS  Google Scholar 

  35. Henderson BR (2000) Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2(9):653–660. doi:10.1038/35023605

    PubMed  CAS  Google Scholar 

  36. Rosin-Arbesfeld R, Townsley F, Bienz M (2000) The APC tumour suppressor has a nuclear export function. Nature 406(6799):1009–1012. doi:10.1038/35023016

    PubMed  CAS  Google Scholar 

  37. Neufeld KL, Zhang F, Cullen BR, White RL (2000) APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep 1(6):519–523. doi:10.1093/embo-reports/kvd117

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Speese SD, Ashley J, Jokhi V, Nunnari J, Barria R, Li Y, Ataman B, Koon A, Chang YT, Li Q, Moore MJ, Budnik V (2012) Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149(4):832–846. doi:10.1016/j.cell.2012.03.032, S0092-8674(12)00420-5 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Kalverda B, Pickersgill H, Shloma VV, Fornerod M (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3):360–371. doi:10.1016/j.cell.2010.01.011, S0092-8674(10)00012-7 [pii]

    PubMed  CAS  Google Scholar 

  40. Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3):372–383. doi:10.1016/j.cell.2009.12.054, S0092-8674(09)01681-X [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Vaquerizas JM, Suyama R, Kind J, Miura K, Luscombe NM, Akhtar A (2010) Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet 6(2):e1000846. doi:10.1371/journal.pgen.1000846

    PubMed Central  PubMed  Google Scholar 

  42. Bai XT, Gu BW, Yin T, Niu C, Xi XD, Zhang J, Chen Z, Chen SJ (2006) Trans-repressive effect of NUP98-PMX1 on PMX1-regulated c-FOS gene through recruitment of histone deacetylase 1 by FG repeats. Cancer Res 66(9):4584–4590. doi:10.1158/0008-5472.CAN-05-3101, 66/9/4584 [pii]

    PubMed  CAS  Google Scholar 

  43. Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM (1999) CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 19(1):764–776

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Shitashige M, Satow R, Honda K, Ono M, Hirohashi S, Yamada T (2008) Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology 134(7):1961–1971. doi:10.1053/j.gastro.2008.03.010, 1971.e1961–1964, S0016-5085(08)00445-9 [pii]

    PubMed  CAS  Google Scholar 

  45. Najdi R, Holcombe RF, Waterman ML (2011) Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 10:5. doi:10.4103/1477-3163.78111

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Kadoya T, Yamamoto H, Suzuki T, Yukita A, Fukui A, Michiue T, Asahara T, Tanaka K, Asashima M, Kikuchi A (2002) Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of beta-catenin. Mol Cell Biol 22(11):3803–3819

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Satow R, Shitashige M, Jigami T, Fukami K, Honda K, Kitabayashi I, Yamada T (2012) beta-catenin inhibits promyelocytic leukemia protein tumor suppressor function in colorectal cancer cells. Gastroenterology 142(3):572–581. doi:10.1053/j.gastro.2011.11.041, S0016-5085(11)01639-8 [pii]

    PubMed  CAS  Google Scholar 

  48. Nathke I (2006) Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nat Rev Cancer 6(12):967–974. doi:10.1038/nrc2010, nrc2010 [pii]

    PubMed  Google Scholar 

  49. Moseley JB, Bartolini F, Okada K, Wen Y, Gundersen GG, Goode BL (2007) Regulated binding of adenomatous polyposis coli protein to actin. J Biol Chem 282(17):12661–12668. doi:10.1074/jbc.M610615200, M610615200 [pii]

    PubMed  CAS  Google Scholar 

  50. Sakamoto Y, Boeda B, Etienne-Manneville S (2013) APC binds intermediate filaments and is required for their reorganization during cell migration. J Cell Biol 200(3):249–258. doi:10.1083/jcb.201206010, jcb.201206010 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J Cell Biol 148(3):505–518

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Jimbo T, Kawasaki Y, Koyama R, Sato R, Takada S, Haraguchi K, Akiyama T (2002) Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol 4(4):323–327. doi:10.1038/ncb779, ncb779 [pii]

    PubMed  CAS  Google Scholar 

  53. Bahmanyar S, Nelson WJ, Barth AI (2009) Role of APC and its binding partners in regulating microtubules in mitosis. Adv Exp Med Biol 656:65–74

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Sharma M, Leung L, Brocardo M, Henderson J, Flegg C, Henderson BR (2006) Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem 281(25):17140–17149. doi:10.1074/jbc.M513027200, M513027200 [pii]

    PubMed  CAS  Google Scholar 

  55. Watanabe T, Wang S, Noritake J, Sato K, Fukata M, Takefuji M, Nakagawa M, Izumi N, Akiyama T, Kaibuchi K (2004) Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev Cell 7(6):871–883. doi:10.1016/j.devcel.2004.10.017, S153458070400382X [pii]

    PubMed  CAS  Google Scholar 

  56. Sharma M, Henderson BR (2007) IQ-domain GTPase-activating Protein 1 regulates beta-catenin at membrane ruffles and its role in macropinocytosis of N-cadherin and adenomatous polyposis coli. J Biol Chem 282(11):8545–8556, http://dx.doi.org/10.1074/jbc.M610272200

    PubMed  CAS  Google Scholar 

  57. Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421:753–756

    PubMed  CAS  Google Scholar 

  58. Etienne-Manneville S, Manneville JB, Nicholls S, Ferenczi MA, Hall A (2005) Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 170(6):895–901. doi:10.1083/jcb.200412172, jcb.200412172 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  59. de Forges H, Bouissou A, Perez F (2012) Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44(2):266–274. doi:10.1016/j.biocel.2011.11.009, S1357-2725(11)00307-4 [pii]

    PubMed  Google Scholar 

  60. Gomez-Cavazos JS, Hetzer MW (2012) Outfits for different occasions: tissue-specific roles of Nuclear Envelope proteins. Curr Opin Cell Biol 24(6):775–783. doi:10.1016/j.ceb.2012.08.008, S0955-0674(12)00133-0 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Caldwell CM, Kaplan KB (2009) The role of APC in mitosis and in chromosome instability. Adv Exp Med Biol 656:51–64

    PubMed  CAS  Google Scholar 

  62. Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, Shuai K, Grosschedl R, van Deursen JM (2008) Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell 133(1):103–115. doi:10.1016/j.cell.2008.01.045, S0092-8674(08)00210-9 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Joseph J, Dasso M (2008) The nucleoporin Nup358 associates with and regulates interphase microtubules. FEBS Lett 582(2):190–196. doi:10.1016/j.febslet.2007.11.087, S0014-5793(07)01241-0 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Cross MK, Powers MA (2011) Nup98 regulates bipolar spindle assembly through association with microtubules and opposition of MCAK. Mol Biol Cell 22(5):661–672. doi:10.1091/mbc.E10-06-0478, mbc.E10-06-0478 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Murawala P, Tripathi MM, Vyas P, Salunke A, Joseph J (2009) Nup358 interacts with APC and plays a role in cell polarization. J Cell Sci 122(Pt 17):3113–3122. doi:10.1242/jcs.037523, jcs.037523 [pii]

    PubMed  CAS  Google Scholar 

  66. Collin L, Schlessinger K, Hall A (2008) APC nuclear membrane association and microtubule polarity. Biol Cell 100(4):243–252, http://dx.doi.org/10.1042/bc20070123

    PubMed  CAS  Google Scholar 

  67. Dikovskaya D, Li Z, Newton IP, Davidson I, Hutchins JR, Kalab P, Clarke PR, Nathke IS (2010) Microtubule assembly by the Apc protein is regulated by importin-beta–RanGTP. J Cell Sci 123(Pt 5):736–746. doi:10.1242/jcs.060806, jcs.060806 [pii]

    PubMed  CAS  Google Scholar 

  68. Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N, Demmers J, Fornerod M, Melchior F, Hoogenraad CC, Medema RH, Akhmanova A (2010) Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8(4):e1000350. doi:10.1371/journal.pbio.1000350

    PubMed Central  PubMed  Google Scholar 

  69. Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T, Nelson WJ, Barth AI (2004) Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117(Pt 7):1117–1128. doi:10.1242/jcs.00939, jcs.00939 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Huang P, Senga T, Hamaguchi M (2007) A novel role of phospho-beta-catenin in microtubule regrowth at centrosome. Oncogene 26(30):4357–4371. doi:10.1038/sj.onc.1210217, 1210217 [pii]

    PubMed  CAS  Google Scholar 

  71. Kim SM, Choi EJ, Song KJ, Kim S, Seo E, Jho EH, Kee SH (2009) Axin localizes to mitotic spindles and centrosomes in mitotic cells. Exp Cell Res 315(6):943–954. doi:10.1016/j.yexcr.2009.01.013, S0014-4827(09)00030-5 [pii]

    PubMed  CAS  Google Scholar 

  72. Fumoto K, Kadono M, Izumi N, Kikuchi A (2009) Axin localizes to the centrosome and is involved in microtubule nucleation. EMBO Rep 10(6):606–613. doi:10.1038/embor.2009.45, embor200945 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Ruan K, Ye F, Li C, Liou YC, Lin SC, Lin SY (2012) PLK1 interacts and phosphorylates Axin that is essential for proper centrosome formation. PLoS One 7(11):e49184. doi:10.1371/journal.pone.0049184, PONE-D-12-11766 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Flegg CP, Sharma M, Medina-Palazon C, Jamieson C, Galea M, Brocardo MG, Mills K, Henderson BR (2010) Nuclear export and centrosome targeting of the protein phosphatase 2A subunit B56alpha: role of B56alpha in nuclear export of the catalytic subunit. J Biol Chem 285(24):18144–18154. doi:10.1074/jbc.M109.093294, M109.093294 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Schneikert J, Behrens J (2006) Truncated APC is required for cell proliferation and DNA replication. Int J Cancer 119(1):74–79. doi:10.1002/ijc.21826

    PubMed  CAS  Google Scholar 

  76. Brocardo MG, Borowiec JA, Henderson BR (2011) Adenomatous polyposis coli protein regulates the cellular response to DNA replication stress. Int J Biochem Cell Biol 43(9):1354–1364. doi:10.1016/j.biocel.2011.05.013, S1357-2725(11)00159-2 [pii]

    PubMed  CAS  Google Scholar 

  77. Lemaitre C, Fischer B, Kalousi A, Hoffbeck AS, Guirouilh-Barbat J, Shahar OD, Genet D, Goldberg M, Betrand P, Lopez B, Brino L, Soutoglou E (2012) The nucleoporin 153, a novel factor in double-strand break repair and DNA damage response. Oncogene 31(45):4803–4809. doi:10.1038/onc.2011.638, onc2011638 [pii]

    PubMed  CAS  Google Scholar 

  78. Johnson M, Sharma M, Henderson BR (2009) IQGAP1 regulation and roles in cancer. Cell Signal 21(10):1471–1478, http://dx.doi.org/10.1016/j.cellsig.2009.02.023

    PubMed  CAS  Google Scholar 

  79. Brandt DT, Marion S, Griffiths G, Watanabe T, Kaibuchi K, Grosse R (2007) Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. J Cell Biol 178(2):193–200, http://dx.doi.org/10.1083/jcb.200612071

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K (2005) IQGAP1: a key regulator of adhesion and migration. J Cell Sci 118(10):2085–2092, http://dx.doi.org/10.1242/jcs.02379

    PubMed  CAS  Google Scholar 

  81. Mataraza JM, Briggs MW, Li Z, Entwistle A, Ridley AJ, Sacks DB (2003) IQGAP1 promotes cell motility and invasion. J Biol Chem 278(42):41237–41245. doi:10.1074/jbc.M304838200

    PubMed  CAS  Google Scholar 

  82. Yamaoka-Tojo M, Ushio-Fukai M, Hilenski L, Dikalov SI, Chen YE, Tojo T, Fukai T, Fujimoto M, Patrushev NA, Wang N, Kontos CD, Bloom GS, Alexander RW (2004) IQGAP1, a novel vascular endothelial growth factor receptor binding protein, is involved in reactive oxygen species–dependent endothelial migration and proliferation. Circ Res 95(3):276–283, http://dx.doi.org/10.1161/01.res.0000136522.58649.60

    PubMed  CAS  Google Scholar 

  83. Bashour A-M, Fullerton AT, Hart MJ, Bloom GS (1997) IQGAP1, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. J Cell Biol 137(7):1555–1566. doi:10.1083/jcb.137.7.1555

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Hart MJ, Callow MG, Souza B, Polakis P (1996) IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J 15(12):2997–3005

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K (1996) Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J Biol Chem 271(38):23363–23367. doi:10.1074/jbc.271.38.23363

    PubMed  CAS  Google Scholar 

  86. Pelikan-Conchaudron A, Le Clainche C, Didry D, Carlier MF (2011) The IQGAP1 protein is a calmodulin-regulated barbed end capper of actin filaments: possible implications in its function in cell migration. J Biol Chem 286(40):35119–35128. doi:10.1074/jbc.M111.258772, M111.258772 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Benseñor LB, Kan H-M, Wang N, Wallrabe H, Davidson LA, Cai Y, Schafer DA, Bloom GS (2007) IQGAP1 regulates cell motility by linking growth factor signaling to actin assembly. J Cell Sci 120(4):658–669, http://dx.doi.org/10.1242/jcs.03376

    PubMed  Google Scholar 

  88. Le Clainche C, Schlaepfer D, Ferrari A, Klingauf M, Grohmanova K, Veligodskiy A, Didry D, Le D, Egile C, Carlier M-F, Kroschewski R (2007) IQGAP1 stimulates actin assembly through the N-WASP-Arp2/3 pathway. J Biol Chem 282(1):426–435, http://dx.doi.org/10.1074/jbc.M607711200

    PubMed  Google Scholar 

  89. Mateer SC, Wang N, Bloom GS (2003) IQGAPs: integrators of the cytoskeleton, cell adhesion machinery, and signaling networks. Cell Motil Cytoskeleton 55(3):147–155, http://dx.doi.org/10.1002/cm.10118

    PubMed  CAS  Google Scholar 

  90. Johnson MA, Henderson BR (2012) The scaffolding protein IQGAP1 co-localizes with actin at the cytoplasmic face of the nuclear envelope: implications for cytoskeletal regulation. Bioarchitecture 2(4):138–142, doi:10.4161/bioa.21182, 21182 [pii]

    Google Scholar 

  91. Cadot B, Gache V, Vasyutina E, Falcone S, Birchmeier C, Gomes ER (2012) Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3. EMBO Rep 13(8):741–749. doi:10.1038/embor.2012.89, embor201289 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121(3):451–463. doi:10.1016/j.cell.2005.02.022

    PubMed  CAS  Google Scholar 

  93. Metzger T, Gache V, Xu M, Cadot B, Folker ES, Richardson BE, Gomes ER, Baylies MK (2012) MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484(7392):120–124. doi:10.1038/nature10914, nature10914 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Munter S, Enninga J, Vazquez-Martinez R, Delbarre E, David-Watine B, Nehrbass U, Shorte S (2006) Actin polymerisation at the cytoplasmic face of eukaryotic nuclei. BMC Cell Biol 7(1):23, http://dx.doi.org/10.1186/1471-2121-7-23

    PubMed Central  PubMed  Google Scholar 

  95. Luxton GWG, Gomes ER, Folker ES, Vintinner E, Gundersen GG (2010) Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329(5994):956–959, http://dx.doi.org/10.1126/science.1189072

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Luxton GWG, Gundersen GG (2011) Orientation and function of the nuclear–centrosomal axis during cell migration. Curr Opin Cell Biol 23(5):579–588, http://dx.doi.org/10.1016/j.ceb.2011.08.001

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Guttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10(3):178–191, http://dx.doi.org/10.1038/nrm2641

    PubMed  Google Scholar 

  98. Johnson M, Sharma M, Brocardo MG, Henderson BR (2011) IQGAP1 translocates to the nucleus in early S-phase and contributes to cell cycle progression after DNA replication arrest. Int J Biochem Cell Biol 43(1):65–73, http://dx.doi.org/10.1016/j.biocel.2010.09.014

    PubMed  CAS  Google Scholar 

  99. Briggs MW, Li Z, Sacks DB (2002) IQGAP1-mediated stimulation of transcriptional co-activation by β-catenin is modulated by calmodulin. J Biol Chem 277(9):7453–7465. doi:10.1074/jbc.M104315200

    PubMed  CAS  Google Scholar 

  100. Wang Y, Wang A, Wang F, Wang M, Zhu M, Ma Y, Wu R (2008) IQGAP1 activates Tcf signal independent of Rac1 and Cdc42 in injury and repair of bronchial epithelial cells. Exp Mol Pathol 85(2):122–128

    PubMed  CAS  Google Scholar 

  101. Jadeski L, Mataraza JM, Jeong H-W, Li Z, Sacks DB (2008) IQGAP1 stimulates proliferation and enhances tumorigenesis of human breast epithelial cells. J Biol Chem 283(2):1008–1017. doi:10.1074/jbc.M708466200

    PubMed  CAS  Google Scholar 

  102. Meyer RD, Sacks DB, Rahimi N (2008) IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PLoS One 3(12):e3848

    PubMed Central  PubMed  Google Scholar 

  103. Wada A, Fukuda M, Mishima M, Nishida E (1998) Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J 17(6):1635–1641

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Wang J-B, Sonn R, Tekletsadik YK, Samorodnitsky D, Osman MA (2009) IQGAP1 regulates cell proliferation through a novel CDC42-mTOR pathway. J Cell Sci 122(12):2024–2033. doi:10.1242/jcs.044644

    PubMed Central  PubMed  CAS  Google Scholar 

  105. de Lanerolle P, Serebryannyy L (2011) Nuclear actin and myosins: life without filaments. Nat Cell Biol 13(11):1282–1288. doi:10.1038/ncb2364, ncb2364 [pii]

    PubMed  Google Scholar 

  106. Wilson KL, Berk JM (2010) The nuclear envelope at a glance. J Cell Sci 123(12):1973–1978, http://dx.doi.org/10.1242/jcs.019042

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Andrin C, McDonald D, Attwood KM, Rodrigue A, Ghosh S, Mirzayans R, Masson JY, Dellaire G, Hendzel MJ (2012) A requirement for polymerized actin in DNA double-strand break repair. Nucleus 3(4):384–395. doi:10.4161/nucl.21055, 21055 [pii]

    PubMed  Google Scholar 

  108. Castano E, Philimonenko VV, Kahle M, Fukalova J, Kalendova A, Yildirim S, Dzijak R, Dingova-Krasna H, Hozak P (2010) Actin complexes in the cell nucleus: new stones in an old field. Histochem Cell Biol 133(6):607–626. doi:10.1007/s00418-010-0701-2

    PubMed  CAS  Google Scholar 

  109. Gieni RS, Hendzel MJ (2009) Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol 87(1):283–306

    PubMed  CAS  Google Scholar 

  110. Sandrock K, Bielek H, Schradi K, Schmidt G, Klugbauer N (2010) The nuclear import of the Small GTPase Rac1 is mediated by the direct interaction with karyopherin alpha2. Traffic 11(2):198–209

    PubMed  CAS  Google Scholar 

  111. Huelsenbeck SC, Schorr A, Roos WP, Huelsenbeck J, Henninger C, Kaina B, Fritz G (2012) Rac1 signaling is required for DNA damage response stimulated by topoisomerase II poisons. J Biol Chem 287(46):38590–38599. doi:10.1074/jbc.M112.377903, M112.377903 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Yan Y, Greer PM, Cao PT, Kolb RH, Cowan KH (2012) Rac1 GTPase plays an important role in gamma-irradiation induced G2/M checkpoint activation. Breast Cancer Res 14(2):R60. doi:10.1186/bcr3164, bcr3164 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Lui C, Mills K, Brocardo MG, Sharma M, Henderson BR (2012) APC as a mobile scaffold: regulation and function at the nucleus, centrosomes, and mitochondria. IUBMB Life 64(3):209–214. doi:10.1002/iub.599

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manisha Sharma or Beric R. Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, M., Johnson, M., Brocardo, M., Jamieson, C., Henderson, B.R. (2014). Wnt Signaling Proteins Associate with the Nuclear Pore Complex: Implications for Cancer. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_16

Download citation

Publish with us

Policies and ethics