Skip to main content

Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis

  • Chapter
  • First Online:
Cancer Biology and the Nuclear Envelope

Abstract

Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARF:

ADP ribosylation factor

CLL:

Chronic lymphocytic leukemia

FEISEM:

Field emission in-lens scanning electron microscopy

IMT:

Inflammatory myofibroblastic tumors

NES:

Nuclear export signal

NLS:

Nuclear localization signal

NPC:

Nuclear pore complex

References

  1. Moore MS, Blobel G (1993) The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365(6447):661–663. doi:10.1038/365661a0

    PubMed  CAS  Google Scholar 

  2. Melchior F, Paschal B, Evans J, Gerace L (1993) Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J Cell Biol 123(6 Pt 2):1649–1659

    PubMed  CAS  Google Scholar 

  3. Drivas GT, Shih A, Coutavas E, Rush MG, D’Eustachio P (1990) Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol Cell Biol 10(4):1793–1798

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349(6305):117–127. doi:10.1038/349117a0

    PubMed  CAS  Google Scholar 

  5. Joseph J (2006) Ran at a glance. J Cell Sci 119(Pt 17):3481–3484. doi:10.1242/jcs.03071, 119/17/3481 [pii]

    PubMed  CAS  Google Scholar 

  6. Scheffzek K, Klebe C, Fritz-Wolf K, Kabsch W, Wittinghofer A (1995) Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374(6520):378–381. doi:10.1038/374378a0

    PubMed  CAS  Google Scholar 

  7. Richards SA, Lounsbury KM, Macara IG (1995) The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1. J Biol Chem 270(24):14405–14411

    PubMed  CAS  Google Scholar 

  8. Gorlich D, Seewald MJ, Ribbeck K (2003) Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J 22(5):1088–1100. doi:10.1093/emboj/cdg113

    PubMed Central  PubMed  Google Scholar 

  9. Smith AE, Slepchenko BM, Schaff JC, Loew LM, Macara IG (2002) Systems analysis of Ran transport. Science 295(5554):488–491. doi:10.1126/science.1064732

    PubMed  CAS  Google Scholar 

  10. Moore W, Zhang C, Clarke PR (2002) Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells. Curr Biol 12(16):1442–1447

    PubMed  CAS  Google Scholar 

  11. Kuersten S, Ohno M, Mattaj IW (2001) Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol 11(12):497–503

    PubMed  CAS  Google Scholar 

  12. Gorlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E, Prehn S (1995) Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5(4):383–392

    PubMed  CAS  Google Scholar 

  13. Li HY, Zheng Y (2004) Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells. Genes Dev 18(5):512–527. doi:10.1101/gad.1177304

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y (2001) Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 291(5504):653–656

    PubMed  CAS  Google Scholar 

  15. Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104(1):95–106

    PubMed  CAS  Google Scholar 

  16. Zhang C, Hutchins JR, Muhlhausser P, Kutay U, Clarke PR (2002) Role of importin-beta in the control of nuclear envelope assembly by Ran. Curr Biol 12(6):498–502

    PubMed  CAS  Google Scholar 

  17. Clarke PR, Zhang C (2004) Spatial and temporal control of nuclear envelope assembly by Ran GTPase. Symp Soc Exp Biol 56:193–204

    PubMed  CAS  Google Scholar 

  18. Harel A, Forbes DJ (2004) Importin beta: conducting a much larger cellular symphony. Mol Cell 16(3):319–330. doi:10.1016/j.molcel.2004.10.026

    PubMed  CAS  Google Scholar 

  19. Dasso M, Seki T, Azuma Y, Ohba T, Nishimoto T (1994) A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO J 13(23):5732–5744

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Nicolas FJ, Zhang C, Hughes M, Goldberg MW, Watton SJ, Clarke PR (1997) Xenopus Ran-binding protein 1: molecular interactions and effects on nuclear assembly in Xenopus egg extracts. J Cell Sci 110(Pt 24):3019–3030

    PubMed  CAS  Google Scholar 

  21. Hughes M, Zhang C, Avis JM, Hutchison CJ, Clarke PR (1998) The role of the ran GTPase in nuclear assembly and DNA replication: characterisation of the effects of Ran mutants. J Cell Sci 111(Pt 20):3017–3026

    PubMed  CAS  Google Scholar 

  22. Hetzer M, Bilbao-Cortes D, Walther TC, Gruss OJ, Mattaj IW (2000) GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 5(6):1013–1024

    PubMed  CAS  Google Scholar 

  23. Zhang C, Clarke PR (2000) Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288(5470):1429–1432

    PubMed  CAS  Google Scholar 

  24. Kurisetty VV, Johnston PG, Johnston N, Erwin P, Crowe P, Fernig DG, Campbell FC, Anderson IP, Rudland PS, El-Tanani MK (2008) RAN GTPase is an effector of the invasive/metastatic phenotype induced by osteopontin. Oncogene 27(57):7139–7149. doi:10.1038/onc.2008.325, onc2008325 [pii]

    PubMed  CAS  Google Scholar 

  25. Azuma K, Sasada T, Takedatsu H, Shomura H, Koga M, Maeda Y, Yao A, Hirai T, Takabayashi A, Shichijo S, Itoh K (2004) Ran, a small GTPase gene, encodes cytotoxic T lymphocyte (CTL) epitopes capable of inducing HLA-A33-restricted and tumor-reactive CTLs in cancer patients. Clin Cancer Res 10(19):6695–6702. doi:10.1158/1078-0432.ccr-04-0818

    PubMed  CAS  Google Scholar 

  26. Xia F, Lee CW, Altieri DC (2008) Tumor cell dependence on Ran-GTP-directed mitosis. Cancer Res 68(6):1826–1833. doi:10.1158/0008-5472.can-07-5279

    PubMed  CAS  Google Scholar 

  27. Ouellet V, Guyot MC, Le Page C, Filali-Mouhim A, Lussier C, Tonin PN, Provencher DM, Mes-Masson AM (2006) Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer. Int J Cancer 119(3):599–607. doi:10.1002/ijc.21902

    PubMed  CAS  Google Scholar 

  28. Abe H, Kamai T, Shirataki H, Oyama T, Arai K, Yoshida K (2008) High expression of Ran GTPase is associated with local invasion and metastasis of human clear cell renal cell carcinoma. Int J Cancer 122(10):2391–2397. doi:10.1002/ijc.23400

    PubMed  CAS  Google Scholar 

  29. Li H, Ren CP, Tan XJ, Yang XY, Zhang HB, Zhou W, Yao KT (2006) Identification of genes related to nasopharyngeal carcinoma with the help of pathway-based networks. Acta Biochim Biophys Sin 38(12):900–910

    PubMed  CAS  Google Scholar 

  30. Roe OD, Anderssen E, Sandeck H, Christensen T, Larsson E, Lundgren S (2010) Malignant pleural mesothelioma: genome-wide expression patterns reflecting general resistance mechanisms and a proposal of novel targets. Lung Cancer 67(1):57–68. doi:10.1016/j.lungcan.2009.03.016

    PubMed  Google Scholar 

  31. Hartmann E, Fernandez V, Moreno V, Valls J, Hernandez L, Bosch F, Abrisqueta P, Klapper W, Dreyling M, Hoster E, Muller-Hermelink HK, Ott G, Rosenwald A, Campo E (2008) Five-gene model to predict survival in mantle-cell lymphoma using frozen or formalin-fixed, paraffin-embedded tissue. J Clin Oncol 26(30):4966–4972. doi:10.1200/jco.2007.12.0410

    PubMed  Google Scholar 

  32. Harousseau JL, Shaughnessy J Jr, Richardson P (2004) Multiple myeloma. Hematology Am Soc Hematol Educ Program 237–256. http://www.ncbi.nlm.nih.gov/pubmed/15561686, doi:10.1182/asheducation-2004.1.237

  33. Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J, Prigent C, Zheng Y (2003) A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5(3):242–248. doi:10.1038/ncb936

    PubMed  CAS  Google Scholar 

  34. Koffa MD, Casanova CM, Santarella R, Kocher T, Wilm M, Mattaj IW (2006) HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 16(8):743–754. doi:10.1016/j.cub.2006.03.056

    PubMed  CAS  Google Scholar 

  35. Sillje HH, Nagel S, Korner R, Nigg EA (2006) HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16(8):731–742. doi:10.1016/j.cub.2006.02.070

    PubMed  CAS  Google Scholar 

  36. Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, Walter JC, Livingston DM (2006) The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 127(3):539–552. doi:10.1016/j.cell.2006.08.053

    PubMed  CAS  Google Scholar 

  37. Yuen HF, Chan KK, Grills C, Murray JT, Platt-Higgins A, Eldin OS, O’Byrne K, Janne P, Fennell DA, Johnston PG, Rudland PS, El-Tanani M (2012) Ran is a potential therapeutic target for cancer cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. Clin Cancer Res 18(2):380–391. doi:10.1158/1078-0432.ccr-11-2035

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Bischoff FR, Ponstingl H (1991) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354(6348):80–82. doi:10.1038/354080a0

    PubMed  CAS  Google Scholar 

  39. Bischoff FR, Ponstingl H (1991) Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc Natl Acad Sci U S A 88(23):10830–10834

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Guttler T, Gorlich D (2011) Ran-dependent nuclear export mediators: a structural perspective. EMBO J 30(17):3457–3474. doi:10.1038/emboj.2011.287

    PubMed Central  PubMed  Google Scholar 

  41. Lui K, Huang Y (2009) RanGTPase: a key regulator of nucleocytoplasmic trafficking. Mol Cell Pharmacol 1(3):148–156

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Walde S, Kehlenbach RH (2010) The part and the whole: functions of nucleoporins in nucleocytoplasmic transport. Trends Cell Biol 20(8):461–469. doi:10.1016/j.tcb.2010.05.001

    PubMed  Google Scholar 

  43. Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65(4):570–594. doi:10.1128/MMBR.65.4.570-594.2001, table of contents

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R (2005) Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol 168(2):233–243. doi:10.1083/jcb.200411005, jcb.200411005 [pii]

    PubMed Central  PubMed  Google Scholar 

  45. Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9(6):464–477. doi:10.1038/nrm2410

    PubMed  CAS  Google Scholar 

  46. Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A (1999) Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398(6722):39–46. doi:10.1038/17969

    PubMed  CAS  Google Scholar 

  47. Vetter IR, Arndt A, Kutay U, Gorlich D, Wittinghofer A (1999) Structural view of the Ran-Importin beta interaction at 2.3 A resolution. Cell 97(5):635–646

    PubMed  CAS  Google Scholar 

  48. Klebe C, Bischoff FR, Ponstingl H, Wittinghofer A (1995) Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34(2):639–647

    PubMed  CAS  Google Scholar 

  49. Ribbeck K, Lipowsky G, Kent HM, Stewart M, Gorlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17(22):6587–6598. doi:10.1093/emboj/17.22.6587

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Smith A, Brownawell A, Macara IG (1998) Nuclear import of Ran is mediated by the transport factor NTF2. Curr Biol 8(25):1403–1406

    PubMed  CAS  Google Scholar 

  51. Chafe SC, Pierce JB, Mangroo D (2012) Nuclear-cytoplasmic trafficking of NTF2, the nuclear import receptor for the RanGTPase, is subjected to regulation. PLoS One 7(8):e42501. doi:10.1371/journal.pone.0042501

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Klebe C, Prinz H, Wittinghofer A, Goody RS (1995) The kinetic mechanism of Ran–nucleotide exchange catalyzed by RCC1. Biochemistry 34(39):12543–12552

    PubMed  CAS  Google Scholar 

  53. Makde RD, England JR, Yennawar HP, Tan S (2010) Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467(7315):562–566. doi:10.1038/nature09321

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Chen T, Muratore TL, Schaner-Tooley CE, Shabanowitz J, Hunt DF, Macara IG (2007) N-terminal alpha-methylation of RCC1 is necessary for stable chromatin association and normal mitosis. Nat Cell Biol 9(5):596–603. doi:10.1038/ncb1572

    PubMed  CAS  Google Scholar 

  55. Nemergut ME, Mizzen CA, Stukenberg T, Allis CD, Macara IG (2001) Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science 292(5521):1540–1543. doi:10.1126/science.292.5521.1540

    PubMed  CAS  Google Scholar 

  56. Bischoff FR, Klebe C, Kretschmer J, Wittinghofer A, Ponstingl H (1994) RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci U S A 91(7):2587–2591

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Seewald MJ, Korner C, Wittinghofer A, Vetter IR (2002) RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415(6872):662–666. doi:10.1038/415662a

    PubMed  CAS  Google Scholar 

  58. Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H (1995) Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J 14(4):705–715

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Coutavas E, Ren M, Oppenheim JD, D’Eustachio P, Rush MG (1993) Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature 366(6455):585–587. doi:10.1038/366585a0

    PubMed  CAS  Google Scholar 

  60. Yokoyama N, Hayashi N, Seki T, Pante N, Ohba T, Nishii K, Kuma K, Hayashida T, Miyata T, Aebi U et al (1995) A giant nucleopore protein that binds Ran/TC4. Nature 376(6536):184–188. doi:10.1038/376184a0

    PubMed  CAS  Google Scholar 

  61. Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A (2013) Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. J Mol Biol 425(8):1318–1329. doi:10.1016/j.jmb.2013.01.021

    PubMed  CAS  Google Scholar 

  62. Werner A, Flotho A, Melchior F (2012) The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol Cell 46(3):287–298. doi:10.1016/j.molcel.2012.02.017

    PubMed  CAS  Google Scholar 

  63. Ogawa Y, Miyamoto Y, Oka M, Yoneda Y (2012) The interaction between importin-alpha and Nup153 promotes importin-alpha/beta-mediated nuclear import. Traffic 13(7):934–946. doi:10.1111/j.1600-0854.2012.01367.x

    PubMed  CAS  Google Scholar 

  64. Liu J, Xiao N, DeFranco DB (1999) Use of digitonin-permeabilized cells in studies of steroid receptor subnuclear trafficking. Methods 19(3):403–409. doi:10.1006/meth.1999.0876

    PubMed  CAS  Google Scholar 

  65. Niklas J, Melnyk A, Yuan Y, Heinzle E (2011) Selective permeabilization for the high-throughput measurement of compartmented enzyme activities in mammalian cells. Anal Biochem 416(2):218–227. doi:10.1016/j.ab.2011.05.039

    PubMed  CAS  Google Scholar 

  66. Conti E, Muller CW, Stewart M (2006) Karyopherin flexibility in nucleocytoplasmic transport. Curr Opin Struct Biol 16(2):237–244. doi:10.1016/j.sbi.2006.03.010

    PubMed  CAS  Google Scholar 

  67. Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, Nishida E (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390(6657):308–311. doi:10.1038/36894

    PubMed  CAS  Google Scholar 

  68. Petosa C, Schoehn G, Askjaer P, Bauer U, Moulin M, Steuerwald U, Soler-Lopez M, Baudin F, Mattaj IW, Muller CW (2004) Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell 16(5):761–775. doi:10.1016/j.molcel.2004.11.018

    PubMed  CAS  Google Scholar 

  69. Bischoff FR, Gorlich D (1997) RanBP1 is crucial for the release of RanGTP from importin beta-related nuclear transport factors. FEBS Lett 419(2–3):249–254

    PubMed  CAS  Google Scholar 

  70. Lapalombella R, Sun Q, Williams K, Tangeman L, Jha S, Zhong Y, Goettl V, Mahoney E, Berglund C, Gupta S, Farmer A, Mani R, Johnson AJ, Lucas D, Mo X, Daelemans D, Sandanayaka V, Shechter S, McCauley D, Shacham S, Kauffman M, Chook YM, Byrd JC (2012) Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 120(23):4621–4634. doi:10.1182/blood-2012-05-429506

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Talcott B, Moore MS (2000) The nuclear import of RCC1 requires a specific nuclear localization sequence receptor, karyopherin alpha3/Qip. J Biol Chem 275(14):10099–10104

    PubMed  CAS  Google Scholar 

  72. Nemergut ME, Macara IG (2000) Nuclear import of the ran exchange factor, RCC1, is mediated by at least two distinct mechanisms. J Cell Biol 149(4):835–850

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Plafker K, Macara IG (2000) Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBP1. Mol Cell Biol 20(10):3510–3521

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135(6 Pt 1):1457–1470

    PubMed  CAS  Google Scholar 

  75. Hopper AK, Traglia HM, Dunst RW (1990) The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J Cell Biol 111(2):309–321

    PubMed  CAS  Google Scholar 

  76. Kutay U, Bischoff FR, Kostka S, Kraft R, Gorlich D (1997) Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90(6):1061–1071

    PubMed  CAS  Google Scholar 

  77. Nishimoto T, Eilen E, Basilico C (1978) Premature of chromosome condensation in a ts DNA-mutant of BHK cells. Cell 15(2):475–483

    PubMed  CAS  Google Scholar 

  78. Uchida S, Sekiguchi T, Nishitani H, Miyauchi K, Ohtsubo M, Nishimoto T (1990) Premature chromosome condensation is induced by a point mutation in the hamster RCC1 gene. Mol Cell Biol 10(2):577–584

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Ren M, Coutavas E, D’Eustachio P, Rush MG (1994) Effects of mutant Ran/TC4 proteins on cell cycle progression. Mol Cell Biol 14(6):4216–4224

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Sazer S, Nurse P (1994) A fission yeast RCC1-related protein is required for the mitosis to interphase transition. EMBO J 13(3):606–615

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Kornbluth S, Dasso M, Newport J (1994) Evidence for a dual role for TC4 protein in regulating nuclear structure and cell cycle progression. J Cell Biol 125(4):705–719

    PubMed  CAS  Google Scholar 

  82. Clarke PR, Klebe C, Wittinghofer A, Karsenti E (1995) Regulation of Cdc2/cyclin B activation by Ran, a Ras-related GTPase. J Cell Sci 108(Pt 3):1217–1225

    PubMed  CAS  Google Scholar 

  83. Arnaoutov A, Dasso M (2003) The Ran GTPase regulates kinetochore function. Dev Cell 5(1):99–111

    PubMed  CAS  Google Scholar 

  84. Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400(6740):178–181. doi:10.1038/22133

    PubMed  CAS  Google Scholar 

  85. Kalab P, Pu RT, Dasso M (1999) The ran GTPase regulates mitotic spindle assembly. Curr Biol 9(9):481–484

    PubMed  CAS  Google Scholar 

  86. Ohba T, Nakamura M, Nishitani H, Nishimoto T (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284(5418):1356–1358

    PubMed  CAS  Google Scholar 

  87. Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284(5418):1359–1362

    PubMed  CAS  Google Scholar 

  88. Carazo-Salas RE, Gruss OJ, Mattaj IW, Karsenti E (2001) Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 3(3):228–234. doi:10.1038/35060009

    PubMed  CAS  Google Scholar 

  89. Wilde A, Lizarraga SB, Zhang L, Wiese C, Gliksman NR, Walczak CE, Zheng Y (2001) Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol 3(3):221–227. doi:10.1038/35060000

    PubMed  CAS  Google Scholar 

  90. Zhang C, Hughes M, Clarke PR (1999) Ran-GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J Cell Sci 112(Pt 14):2453–2461

    PubMed  CAS  Google Scholar 

  91. Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, Mattaj IW (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104(1):83–93

    PubMed  CAS  Google Scholar 

  92. Ems-McClung SC, Zheng Y, Walczak CE (2004) Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell 15(1):46–57. doi:10.1091/mbc.E03-07-0454

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Schatz CA, Santarella R, Hoenger A, Karsenti E, Mattaj IW, Gruss OJ, Carazo-Salas RE (2003) Importin alpha-regulated nucleation of microtubules by TPX2. EMBO J 22(9):2060–2070. doi:10.1093/emboj/cdg195

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Wittmann T, Wilm M, Karsenti E, Vernos I (2000) TPX2, A novel xenopus MAP involved in spindle pole organization. J Cell Biol 149(7):1405–1418

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Bayliss R, Sardon T, Vernos I, Conti E (2003) Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12(4):851–862

    PubMed  CAS  Google Scholar 

  96. Wong J, Fang G (2006) HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol 173(6):879–891. doi:10.1083/jcb.200511132

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Meunier S, Vernos I (2011) K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat Cell Biol 13(12):1406–1414. doi:10.1038/ncb2372

    PubMed  CAS  Google Scholar 

  98. Yokoyama H, Gruss OJ, Rybina S, Caudron M, Schelder M, Wilm M, Mattaj IW, Karsenti E (2008) Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J Cell Biol 180(5):867–875. doi:10.1083/jcb.200706189

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Groen AC, Cameron LA, Coughlin M, Miyamoto DT, Mitchison TJ, Ohi R (2004) XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr Biol 14(20):1801–1811. doi:10.1016/j.cub.2004.10.002

    PubMed  CAS  Google Scholar 

  100. Clarke PR, Sanderson HS (2006) A mitotic role for BRCA1/BARD1 in tumor suppression? Cell 127(3):453–455. doi:10.1016/j.cell.2006.10.020

    PubMed  CAS  Google Scholar 

  101. Arnaoutov A, Azuma Y, Ribbeck K, Joseph J, Boyarchuk Y, Karpova T, McNally J, Dasso M (2005) Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nat Cell Biol 7(6):626–632. doi:10.1038/ncb1263

    PubMed  CAS  Google Scholar 

  102. Wang W, Budhu A, Forgues M, Wang XW (2005) Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol 7(8):823–830. doi:10.1038/ncb1282

    PubMed  CAS  Google Scholar 

  103. Peloponese JM Jr, Haller K, Miyazato A, Jeang KT (2005) Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein. Proc Natl Acad Sci U S A 102(52):18974–18979. doi:10.1073/pnas.0506659103

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Demeter J, Morphew M, Sazer S (1995) A mutation in the RCC1-related protein pim1 results in nuclear envelope fragmentation in fission yeast. Proc Natl Acad Sci U S A 92(5):1436–1440

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Zhang C, Goldberg MW, Moore WJ, Allen TD, Clarke PR (2002) Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly. Eur J Cell Biol 81(11):623–633. doi:10.1078/0171-9335-00288

    PubMed  CAS  Google Scholar 

  106. Walther TC, Askjaer P, Gentzel M, Habermann A, Griffiths G, Wilm M, Mattaj IW, Hetzer M (2003) RanGTP mediates nuclear pore complex assembly. Nature 424(6949):689–694. doi:10.1038/nature01898

    PubMed  CAS  Google Scholar 

  107. D’Angelo MA, Anderson DJ, Richard E, Hetzer MW (2006) Nuclear pores form de novo from both sides of the nuclear envelope. Science 312(5772):440–443. doi:10.1126/science.1124196

    PubMed  Google Scholar 

  108. Goldberg MW, Rutherford SA, Hughes M, Cotter LA, Bagley S, Kiseleva E, Allen TD, Clarke PR (2000) Ran alters nuclear pore complex conformation. J Mol Biol 300(3):519–529. doi:10.1006/jmbi.2000.3891

    PubMed  CAS  Google Scholar 

  109. Timinszky G, Tirian L, Nagy FT, Toth G, Perczel A, Kiss-Laszlo Z, Boros I, Clarke PR, Szabad J (2002) The importin-beta P446L dominant-negative mutant protein loses RanGTP binding ability and blocks the formation of intact nuclear envelope. J Cell Sci 115(Pt 8):1675–1687

    PubMed  CAS  Google Scholar 

  110. Askjaer P, Galy V, Hannak E, Mattaj IW (2002) Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. Mol Biol Cell 13(12):4355–4370. doi:10.1091/mbc.E02-06-0346

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Bamba C, Bobinnec Y, Fukuda M, Nishida E (2002) The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr Biol 12(6):503–507

    PubMed  CAS  Google Scholar 

  112. Ryan KJ, McCaffery JM, Wente SR (2003) The Ran GTPase cycle is required for yeast nuclear pore complex assembly. J Cell Biol 160(7):1041–1053. doi:10.1083/jcb.200209116

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Zhang C, Clarke PR (2001) Roles of Ran-GTP and Ran-GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Curr Biol 11(3):208–212

    PubMed  CAS  Google Scholar 

  114. Hachet V, Kocher T, Wilm M, Mattaj IW (2004) Importin alpha associates with membranes and participates in nuclear envelope assembly in vitro. EMBO J 23(7):1526–1535. doi:10.1038/sj.emboj.7600154

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Lu Q, Lu Z, Liu Q, Guo L, Ren H, Fu J, Jiang Q, Clarke PR, Zhang C (2012) Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-alpha/beta. Cell Res 22(11):1562–1575. doi:10.1038/cr.2012.113

    PubMed Central  PubMed  CAS  Google Scholar 

  116. Wozniak R, Clarke PR (2003) Nuclear pores: sowing the seeds of assembly on the chromatin landscape. Curr Biol 13(24):R970–R972

    PubMed  CAS  Google Scholar 

  117. Harel A, Chan RC, Lachish-Zalait A, Zimmerman E, Elbaum M, Forbes DJ (2003) Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol Biol Cell 14(11):4387–4396. doi:10.1091/mbc.E03-05-0275

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Fernandez AG, Piano F (2006) MEL-28 is downstream of the Ran cycle and is required for nuclear-envelope function and chromatin maintenance. Curr Biol 16(17):1757–1763. doi:10.1016/j.cub.2006.07.071

    PubMed  CAS  Google Scholar 

  119. Galy V, Askjaer P, Franz C, Lopez-Iglesias C, Mattaj IW (2006) MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr Biol 16(17):1748–1756. doi:10.1016/j.cub.2006.06.067

    PubMed  CAS  Google Scholar 

  120. Rasala BA, Orjalo AV, Shen Z, Briggs S, Forbes DJ (2006) ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc Natl Acad Sci U S A 103(47):17801–17806. doi:10.1073/pnas.0608484103

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Franz C, Walczak R, Yavuz S, Santarella R, Gentzel M, Askjaer P, Galy V, Hetzer M, Mattaj IW, Antonin W (2007) MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep 8(2):165–172. doi:10.1038/sj.embor.7400889

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Gillespie PJ, Khoudoli GA, Stewart G, Swedlow JR, Blow JJ (2007) ELYS/MEL-28 chromatin association coordinates nuclear pore complex assembly and replication licensing. Curr Biol 17(19):1657–1662. doi:10.1016/j.cub.2007.08.041

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Ma Y, Cai S, Lv Q, Jiang Q, Zhang Q, Sodmergen ZZ, Zhang C (2007) Lamin B receptor plays a role in stimulating nuclear envelope production and targeting membrane vesicles to chromatin during nuclear envelope assembly through direct interaction with importin beta. J Cell Sci 120(Pt 3):520–530. doi:10.1242/jcs.03355

    PubMed  CAS  Google Scholar 

  124. Ye Q, Worman HJ (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271(25):14653–14656

    PubMed  CAS  Google Scholar 

  125. Pyrpasopoulou A, Meier J, Maison C, Simos G, Georgatos SD (1996) The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 15(24):7108–7119

    PubMed Central  PubMed  CAS  Google Scholar 

  126. Makatsori D, Kourmouli N, Polioudaki H, Shultz LD, McLean K, Theodoropoulos PA, Singh PB, Georgatos SD (2004) The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279(24):25567–25573. doi:10.1074/jbc.M313606200

    PubMed  CAS  Google Scholar 

  127. Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152(3):584–598. doi:10.1016/j.cell.2013.01.009

    PubMed  CAS  Google Scholar 

  128. Kurisetty VV, Johnston PG, Rudland PS, El-Tanani MK (2009) Identification of genes differentially expressed between benign and osteopontin transformed rat mammary epithelial cells. BMC Res Notes 2:15. doi:10.1186/1756-0500-2-15

    PubMed Central  PubMed  Google Scholar 

  129. Fitzpatrick MA, Funk MC, Gius D, Huettner PC, Zhang Z, Bidder M, Ma D, Powell MA, Rader JS (2006) Identification of chromosomal alterations important in the development of cervical intraepithelial neoplasia and invasive carcinoma using alignment of DNA microarray data. Gynecol Oncol 103(2):458–462. doi:10.1016/j.ygyno.2006.03.020

    PubMed  CAS  Google Scholar 

  130. Li B, Zhang YL (2002) Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization. Cell Res 12(3–4):215–221. doi:10.1038/sj.cr.7290127

    PubMed  Google Scholar 

  131. Lin YM, Furukawa Y, Tsunoda T, Yue CT, Yang KC, Nakamura Y (2002) Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene 21(26):4120–4128. doi:10.1038/sj.onc.1205518

    PubMed  CAS  Google Scholar 

  132. Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart L, Montfort J, Victorero G, Viret F, Ollendorff V, Fert V, Giovaninni M, Delpero JR, Nguyen C, Viens P, Monges G, Birnbaum D, Houlgatte R (2004) Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23(7):1377–1391. doi:10.1038/sj.onc.1207262

    PubMed  CAS  Google Scholar 

  133. Hung KE, Faca V, Song K, Sarracino DA, Richard LG, Krastins B, Forrester S, Porter A, Kunin A, Mahmood U, Haab BB, Hanash SM, Kucherlapati R (2009) Comprehensive proteome analysis of an Apc mouse model uncovers proteins associated with intestinal tumorigenesis. Cancer Prev Res (Phila) 2(3):224–233. doi:10.1158/1940-6207.capr-08-0153

    CAS  Google Scholar 

  134. Johnston NI, Gunasekharan VK, Ravindranath A, O’Connell C, Johnston PG, El-Tanani MK (2008) Osteopontin as a target for cancer therapy. Front Biosci 13:4361–4372

    PubMed  CAS  Google Scholar 

  135. Brown LF, Berse B, Van de Water L, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ, Dvorak HF, Senger DR (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3(10):1169–1180

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26(3):179–184

    PubMed  CAS  Google Scholar 

  137. El-Tanani MK, Campbell FC, Kurisetty V, Jin D, McCann M, Rudland PS (2006) The regulation and role of osteopontin in malignant transformation and cancer. Cytokine Growth Factor Rev 17(6):463–474. doi:10.1016/j.cytogfr.2006.09.010

    PubMed  CAS  Google Scholar 

  138. Oates AJ, Barraclough R, Rudland PS (1996) The identification of osteopontin as a metastasis-related gene product in a rodent mammary tumour model. Oncogene 13(1):97–104

    PubMed  CAS  Google Scholar 

  139. Chen H, Ke Y, Oates AJ, Barraclough R, Rudland PS (1997) Isolation of and effector for metastasis-inducing DNAs from a human metastatic carcinoma cell line. Oncogene 14(13):1581–1588. doi:10.1038/sj.onc.1200993

    PubMed  CAS  Google Scholar 

  140. El-Tanani MK (2008) Role of osteopontin in cellular signaling and metastatic phenotype. Front Biosci 13:4276–4284

    PubMed  CAS  Google Scholar 

  141. Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, Shuai K, Grosschedl R, van Deursen JM (2008) Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell 133(1):103–115. doi:10.1016/j.cell.2008.01.045

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Ma Z, Hill DA, Collins MH, Morris SW, Sumegi J, Zhou M, Zuppan C, Bridge JA (2003) Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 37(1):98–105. doi:10.1002/gcc.10177

    PubMed  CAS  Google Scholar 

  143. Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L, Gray NS, Wilner K, Christensen JG, Demetri G, Shapiro GI, Rodig SJ, Eck MJ, Janne PA (2010) The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res 70(24):10038–10043. doi:10.1158/0008-5472.can-10-2956

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Solar P, Sytkowski AJ (2011) Differentially expressed genes associated with cisplatin resistance in human ovarian adenocarcinoma cell line A2780. Cancer Lett 309(1):11–18. doi:10.1016/j.canlet.2011.05.008

    PubMed  CAS  Google Scholar 

  145. Tanaka T, Ohkubo S, Tatsuno I, Prives C (2007) hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130(4):638–650. doi:10.1016/j.cell.2007.08.001

    PubMed  CAS  Google Scholar 

  146. Lee JH, Kang Y, Khare V, Jin ZY, Kang MY, Yoon Y, Hyun JW, Chung MH, Cho SI, Jun JY, Chang IY, You HJ (2010) The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage. Oncogene 29(10):1431–1450. doi:10.1038/onc.2009.438

    PubMed  CAS  Google Scholar 

  147. Lorenzato A, Martino C, Dani N, Oligschlager Y, Ferrero AM, Biglia N, Calogero R, Olivero M, Di Renzo MF (2012) The cellular apoptosis susceptibility CAS/CSE1L gene protects ovarian cancer cells from death by suppressing RASSF1C. FASEB J 26(6):2446–2456. doi:10.1096/fj.11-195982

    PubMed  CAS  Google Scholar 

  148. Yao Y, Dong Y, Lin F, Zhao H, Shen Z, Chen P, Sun YJ, Tang LN, Zheng SE (2009) The expression of CRM1 is associated with prognosis in human osteosarcoma. Oncol Rep 21(1):229–235

    PubMed  CAS  Google Scholar 

  149. Shen A, Wang Y, Zhao Y, Zou L, Sun L, Cheng C (2009) Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65(1):153–159. doi:10.1227/01.neu.0000348550.47441.4b, discussion 159–160

    PubMed  Google Scholar 

  150. Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83(8):1021–1032. doi:10.1016/j.bcp.2011.12.016

    PubMed  CAS  Google Scholar 

  151. Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, Clynes M, Barron N (2009) MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 45(17):3104–3118. doi:10.1016/j.ejca.2009.09.014

    PubMed  CAS  Google Scholar 

  152. Ly TK, Wang J, Pereira R, Rojas KS, Peng X, Feng Q, Cerione RA, Wilson KF (2010) Activation of the Ran GTPase is subject to growth factor regulation and can give rise to cellular transformation. J Biol Chem 285(8):5815–5826. doi:10.1074/jbc.M109.071886

    PubMed Central  PubMed  CAS  Google Scholar 

  153. Morgan-Lappe SE, Tucker LA, Huang X, Zhang Q, Sarthy AV, Zakula D, Vernetti L, Schurdak M, Wang J, Fesik SW (2007) Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer Res 67(9):4390–4398. doi:10.1158/0008-5472.can-06-4132

    PubMed  CAS  Google Scholar 

  154. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626. doi:10.1016/j.addr.2008.08.005

    PubMed  CAS  Google Scholar 

  155. McCarron PA, Faheem AM (2010) Nanomedicine-based cancer targeting: a new weapon in an old war. Nanomedicine (Lond) 5(1):3–5. doi:10.2217/nnm.09.89

    Google Scholar 

  156. Li L, Wang R, Wilcox D, Zhao X, Song J, Lin X, Kohlbrenner WM, Fesik SW, Shen Y (2012) Tumor vasculature is a key determinant for the efficiency of nanoparticle-mediated siRNA delivery. Gene Ther 19(7):775–780. doi:10.1038/gt.2011.146

    PubMed Central  PubMed  CAS  Google Scholar 

  157. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 57(1):1–8

    PubMed  CAS  Google Scholar 

  158. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. doi:10.1038/nnano.2007.387

    PubMed  CAS  Google Scholar 

  159. Kuo PY, Saltzman WM (1996) Novel systems for controlled delivery of macromolecules. Crit Rev Eukaryot Gene Expr 6(1):59–73

    PubMed  CAS  Google Scholar 

  160. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 3(2):133–149

    PubMed Central  PubMed  Google Scholar 

  161. Hong M, Zhu S, Jiang Y, Tang G, Sun C, Fang C, Shi B, Pei Y (2010) Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Control Release 141(1):22–29. doi:10.1016/j.jconrel.2009.08.024

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El-Tanani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matchett, K.B. et al. (2014). Ran GTPase in Nuclear Envelope Formation and Cancer Metastasis. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_15

Download citation

Publish with us

Policies and ethics