Advertisement

Roles of the Nucleoporin Tpr in Cancer and Aging

  • Chelsi J. Snow
  • Bryce M. Paschal
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 773)

Abstract

Tpr is a prominent architectural component of the nuclear pore complex that forms the basket-like structure on the nucleoplasmic side of the pore. Tpr, which stands for translocated promoter region, was originally described in the context of oncogenic fusions with the receptor tyrosine kinases Met, TRK, and Raf. Tpr has been since implicated in a variety of nuclear functions, including nuclear transport, chromatin organization, regulation of transcription, and mitosis. More recently, Tpr function has been linked to events including p53 signaling and premature aging in Hutchinson–Gilford Progeria Syndrome (HGPS). Here we provide an overview of the various processes that involve Tpr, and discuss how the levels and localization of a single protein can affect diverse pathways in the cell.

Keywords

Tpr Translocated promoter region Nuclear pore Met TRK Raf Oncogenic fusion Mad1 Mad2 

Abbreviations

APC

Anaphase promoting complex

EGF

Epidermal growth factor

HEZ

Heterochromatin exclusion zone

HGF

Hepatocyte growth factor

HOS

Human osteogenic sarcoma

HGPS

Hutchinson–Gilford progeria syndrome

MSL

Male-specific lethal

MNNG

N-methyl-N′-nitronitrosoguanidine

NES

Nuclear export signal

NLS

Nuclear localization signal

NPC

Nuclear pore complex

NUP

Nucleoporin

SAC

Spindle assembly checkpoint

TPR

Translocated promoter region

References

  1. 1.
    Ribbeck K, Gorlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20(6):1320–1330. doi: 10.1093/emboj/20.6.1320 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci U S A 101(35):12887–12892. doi: 10.1073/pnas.0403675101 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6(11):1114–1121. doi: 10.1038/ncb1184, ncb1184 [pii]PubMedCrossRefGoogle Scholar
  4. 4.
    D’Angelo MA, Hetzer MW (2008) Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18(10):456–466. doi: 10.1016/j.tcb.2008.07.009, S0962-8924(08)00213-4 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927. doi: 10.1083/jcb.200206106 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hoelz A, Debler EW, Blobel G (2011) The structure of the nuclear pore complex. Annu Rev Biochem 80:613–643. doi: 10.1146/annurev-biochem-060109-151030 PubMedCrossRefGoogle Scholar
  7. 7.
    Goldberg MW, Allen TD (1993) The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci 106(Pt 1):261–274PubMedGoogle Scholar
  8. 8.
    Jarnik M, Aebi U (1991) Toward a more complete 3-D structure of the nuclear pore complex. J Struct Biol 107(3):291–308PubMedCrossRefGoogle Scholar
  9. 9.
    Goldberg MW, Allen TD (1992) High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J Cell Biol 119(6):1429–1440PubMedCrossRefGoogle Scholar
  10. 10.
    Hase ME, Kuznetsov NV, Cordes VC (2001) Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol Biol Cell 12(8):2433–2452PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Krull S, Thyberg J, Bjorkroth B, Rackwitz HR, Cordes VC (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol Biol Cell 15(9):4261–4277. doi: 10.1091/mbc.E04-03-0165, E04-03-0165 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cordes VC, Hase ME, Muller L (1998) Molecular segments of protein Tpr that confer nuclear targeting and association with the nuclear pore complex. Exp Cell Res 245(1):43–56. doi: 10.1006/excr.1998.4246, S0014-4827(98)94246-X [pii]PubMedCrossRefGoogle Scholar
  13. 13.
    Hase ME, Cordes VC (2003) Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol Biol Cell 14(5):1923–1940. doi: 10.1091/mbc.E02-09-0620, 14/5/1923 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Fontoura BM, Dales S, Blobel G, Zhong H (2001) The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proc Natl Acad Sci U S A 98(6):3208–3213. doi: 10.1073/pnas.061014698, 98/6/3208 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Frosst P, Guan T, Subauste C, Hahn K, Gerace L (2002) Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J Cell Biol 156(4):617–630. doi: 10.1083/jcb.200106046, jcb.200106046 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Paddy MR (1998) The Tpr protein: linking structure and function in the nuclear interior? Am J Hum Genet 63(2):305–310. doi: 10.1086/301989, S0002-9297(07)61471-2 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dultz E, Zanin E, Wurzenberger C, Braun M, Rabut G, Sironi L, Ellenberg J (2008) Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J Cell Biol 180(5):857–865. doi: 10.1083/jcb.200707026, jcb.200707026 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R, Lohka M, Burke B (1999) Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci 112(Pt 13):2253–2264PubMedGoogle Scholar
  19. 19.
    Ben-Efraim I, Frosst PD, Gerace L (2009) Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr. BMC Cell Biol 10:74. doi: 10.1186/1471-2121-10-74, 1471-2121-10-74 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Snow CJ, Dar A, Dutta A, Kehlenbach RH, Paschal BM (2013) Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport. J Cell Biol 201(4):541–557. doi: 10.1083/jcb.201212117 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8(7):507–517. doi: 10.1038/nrg2122, nrg2122 [pii]PubMedCrossRefGoogle Scholar
  22. 22.
    Luthra R, Kerr SC, Harreman MT, Apponi LH, Fasken MB, Ramineni S, Chaurasia S, Valentini SR, Corbett AH (2007) Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem 282(5):3042–3049. doi: 10.1074/jbc.M608741200, M608741200 [pii]PubMedCrossRefGoogle Scholar
  23. 23.
    Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21(6):811–823. doi: 10.1016/j.molcel.2006.02.007, S1097-2765(06)00089-X [pii]PubMedCrossRefGoogle Scholar
  24. 24.
    Krull S, Dorries J, Boysen B, Reidenbach S, Magnius L, Norder H, Thyberg J, Cordes VC (2010) Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 29(10):1659–1673. doi: 10.1038/emboj.2010.54, emboj201054 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    David-Watine B (2011) Silencing nuclear pore protein Tpr elicits a senescent-like phenotype in cancer cells. PLoS One 6(7):e22423. doi: 10.1371/journal.pone.0022423 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Shibata S, Matsuoka Y, Yoneda Y (2002) Nucleocytoplasmic transport of proteins and poly(A) + RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 7(4):421–434, 525 [pii]PubMedCrossRefGoogle Scholar
  27. 27.
    Bangs P, Burke B, Powers C, Craig R, Purohit A, Doxsey S (1998) Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J Cell Biol 143(7):1801–1812PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Coyle JH, Bor YC, Rekosh D, Hammarskjold ML (2011) The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. RNA 17(7):1344–1356. doi: 10.1261/rna.2616111, rna.2616111 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Rajanala K, Nandicoori VK (2012) Localization of nucleoporin Tpr to the nuclear pore complex is essential for Tpr mediated regulation of the export of unspliced RNA. PLoS One 7(1):e29921. doi: 10.1371/journal.pone.0029921, PONE-D-11-17401 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Vinciguerra P, Iglesias N, Camblong J, Zenklusen D, Stutz F (2005) Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J 24(4):813–823. doi: 10.1038/sj.emboj.7600527, 7600527 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116(1):63–73, S0092867403010262 [pii]PubMedCrossRefGoogle Scholar
  32. 32.
    Park M, Dean M, Cooper CS, Schmidt M, O’Brien SJ, Blair DG, Vande Woude GF (1986) Mechanism of met oncogene activation. Cell 45(6):895–904, 0092-8674(86)90564-7 [pii]PubMedCrossRefGoogle Scholar
  33. 33.
    Luraghi P, Schelter F, Kruger A, Boccaccio C (2012) The MET oncogene as a therapeutical target in cancer invasive growth. Front Pharmacol 3:164. doi: 10.3389/fphar.2012.00164 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Liang TJ, Reid AE, Xavier R, Cardiff RD, Wang TC (1996) Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J Clin Invest 97(12):2872–2877. doi: 10.1172/JCI118744 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Rodrigues GA, Park M (1993) Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol 13(11):6711–6722PubMedCentralPubMedGoogle Scholar
  36. 36.
    Peschard P, Park M (2007) From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 26(9):1276–1285. doi: 10.1038/sj.onc.1210201, 1210201 [pii]PubMedCrossRefGoogle Scholar
  37. 37.
    Rodrigues GA, Park M, Schlessinger J (1997) Activation of the JNK pathway is essential for transformation by the Met oncogene. EMBO J 16(10):2634–2645. doi: 10.1093/emboj/16.10.2634 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Mak HH, Peschard P, Lin T, Naujokas MA, Zuo D, Park M (2007) Oncogenic activation of the Met receptor tyrosine kinase fusion protein, Tpr-Met, involves exclusion from the endocytic degradative pathway. Oncogene 26(51):7213–7221. doi: 10.1038/sj.onc.1210522 PubMedCrossRefGoogle Scholar
  39. 39.
    Soman NR, Correa P, Ruiz BA, Wogan GN (1991) The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci U S A 88(11):4892–4896PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Yu J, Miehlke S, Ebert MP, Hoffmann J, Breidert M, Alpen B, Starzynska T, Stolte Prof M, Malfertheiner P, Bayerdorffer E (2000) Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer 88(8):1801–1806PubMedCrossRefGoogle Scholar
  41. 41.
    Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA (1997) Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 19(2):112–123. doi: 10.1002/(SICI)1098-2264(199706)19:2<112::AID-GCC7>3.0.CO;2-1 [pii] PubMedCrossRefGoogle Scholar
  42. 42.
    King HW, Tempest PR, Merrifield KR, Rance AJ (1988) tpr homologues activate met and raf. Oncogene 2(6):617–619PubMedGoogle Scholar
  43. 43.
    Gough SM, Slape CI, Aplan PD (2011) NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 118(24):6247–6257. doi: 10.1182/blood-2011-07-328880 Google Scholar
  44. 44.
    Kohler A, Hurt E (2010) Gene regulation by nucleoporins and links to cancer. Mol Cell 38(1):6–15. doi: 10.1016/j.molcel.2010.01.040, S1097-2765(10)00172-3 [pii]PubMedCrossRefGoogle Scholar
  45. 45.
    Xu S, Powers MA (2009) Nuclear pore proteins and cancer. Semin Cell Dev Biol 20(5):620–630. doi: 10.1016/j.semcdb.2009.03.003, S1084-9521(09)00041-X [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Stukenberg PT, Macara IG (2003) The kinetochore NUPtials. Nat Cell Biol 5(11):945–947. doi: 10.1038/ncb1103-945, ncb1103-945 [pii]PubMedCrossRefGoogle Scholar
  47. 47.
    Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8(5):379–393. doi: 10.1038/nrm2163 PubMedCrossRefGoogle Scholar
  48. 48.
    Lee SH, Sterling H, Burlingame A, McCormick F (2008) Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev 22(21):2926–2931. doi: 10.1101/gad.1677208, 22/21/2926 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Nakano H, Funasaka T, Hashizume C, Wong RW (2010) Nucleoporin translocated promoter region (Tpr) associates with dynein complex, preventing chromosome lagging formation during mitosis. J Biol Chem 285(14):10841–10849. doi: 10.1074/jbc.M110.105890, M110.105890 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18(12):7288–7293PubMedCentralPubMedGoogle Scholar
  51. 51.
    Funasaka T, Tsuka E, Wong RW (2012) Regulation of autophagy by nucleoporin Tpr. Sci Rep 2:878. doi: 10.1038/srep00878 PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Vomastek T, Iwanicki MP, Burack WR, Tiwari D, Kumar D, Parsons JT, Weber MJ, Nandicoori VK (2008) Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol Cell Biol 28(22):6954–6966. doi: 10.1128/MCB.00925-08, MCB.00925-08 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Pouyssegur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64(5–6):755–763PubMedCrossRefGoogle Scholar
  54. 54.
    Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290. doi: 10.1038/sj.onc.1210421 PubMedCrossRefGoogle Scholar
  55. 55.
    Csoka AB, English SB, Simkevich CP, Ginzinger DG, Butte AJ, Schatten GP, Rothman FG, Sedivy JM (2004) Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell 3(4):235–243. doi: 10.1111/j.1474-9728.2004.00105.x, ACE105 [pii]PubMedCrossRefGoogle Scholar
  56. 56.
    Kelley JB, Datta S, Snow CJ, Chatterjee M, Ni L, Spencer A, Yang CS, Cubenas-Potts C, Matunis MJ, Paschal BM (2011) The defective nuclear lamina in Hutchinson-Gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Mol Cell Biol 31(16):3378–3395. doi: 10.1128/MCB.05087-11, MCB.05087-11 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, Stewart CL, Vega JA, Tryggvason K, Freije JM, Lopez-Otin C (2005) Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437(7058):564–568. doi: 10.1038/nature04019 PubMedCrossRefGoogle Scholar
  58. 58.
    Nagai M, Yoneda Y (2013) Downregulation of the small GTPase ras-related nuclear protein accelerates cellular ageing. Biochim Biophys Acta 1830(3):2813–2819. doi:10.1016/j.bbagen.2012.11.002819. doi:10.1016/j.bbagen.2012.11.001PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Center for Cell SignalingUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Biochemistry and Molecular Genetics, Health Sciences CenterUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations