Skip to main content

The Non-random Repositioning of Whole Chromosomes and Individual Gene Loci in Interphase Nuclei and Its Relevance in Disease, Infection, Aging, and Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

The genomes of a wide range of different organisms are non-randomly organized within interphase nuclei. Chromosomes and genes can be moved rapidly, with direction, to new non-random locations within nuclei upon a stimulus such as a signal to initiate differentiation, quiescence or senescence, or also the application of heat or an infection with a pathogen. It is now becoming increasingly obvious that chromosome and gene position can be altered in diseases such as cancer and other syndromes that are affected by changes to nuclear architecture such as the laminopathies. This repositioning seems to affect gene expression in these cells and may play a role in progression of the disease. We have some evidence in breast cancer cells and in the premature aging disease Hutchinson–Gilford Progeria that an aberrant nuclear envelope may lead to genome repositioning and correction of these nuclear envelope defects can restore proper gene positioning and expression in both disease situations.

Although spatial positioning of the genome probably does not entirely control expression of genes, it appears that spatio-epigenetics may enhance the control over gene expression globally and/or is deeply involved in regulating specific sets of genes. A deviation from normal spatial positioning of the genome for a particular cell type could lead to changes that affect the future health of the cell or even an individual.

The online version of the original chapter can be found at http://dx.doi.org/10.1007/978-1-4899-8032-8_28

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4899-8032-8_28

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

CML:

Chronic myeloid leukemia

FISH:

Fluorescence in situ hybridization

GFP:

Green fluorescent protein

HGPS:

Hutchinson–Gilford progeria syndrome

References

  1. Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schröck E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58:777–792

    Article  PubMed  CAS  Google Scholar 

  2. Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  3. Bridger JM, Bickmore WA (1998) Putting the genome on the map. Trends Genet 14:403–410

    Article  PubMed  CAS  Google Scholar 

  4. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  5. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152

    Article  PubMed  CAS  Google Scholar 

  7. Mehta IS, Figgitt M, Clements CS, Kill IR, Bridger JM (2007) Alterations to nuclear architecture and genome behavior in senescent cells. Ann N Y Acad Sci 1100:250–263

    Article  PubMed  CAS  Google Scholar 

  8. Meaburn KJ, Cabuy E, Bonne G, Levy N, Morris GE, Novelli G, Kill IR, Bridger JM (2007) Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging Cell 6:139–153

    Article  PubMed  CAS  Google Scholar 

  9. Mehta IS, Eskiw CH, Arican HD, Kill IR, Bridger JM (2011) Farnesyltransferase inhibitor treatment restores chromosome territory positions and active chromosomes dynamics in Hutchinson-Gilford progeria syndrome cells. Genome Biol 12:R74

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Wazir U, Ahmed MH, Bridger JM, Harvey A, Jiang WG, Sharma AK, Mokbel K (2013) The clinicopathological significance of lamin A/C, lamin B1 and lamin B receptor mRNA expression in human breast cancer. Cell Mol Biol Lett 18(4):595–611. doi:10.2478/s11658-013-0109-9

    Google Scholar 

  11. Knight M, Ittiprasert W, Odoemelam EC, Adema CM, Miller A, Raghavan N, Bridger JM (2011) Non-random organization of the Biomphalaria glabrata genome in interphase Bge cells and the spatial repositioning of activated genes in cells co-cultured with Schistosoma mansoni. Int J Parasitol 41:61–70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11:R5

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Bridger JM, Lichter P (1999) Analysis of mammalian interphase chromosomes by FISH and immunofluorescence. In: Chromosome Structural Analysis: a practical approach. Edited by Dr. Wendy Bickmore IRL Press.

    Google Scholar 

  14. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16:825–831

    Article  PubMed  CAS  Google Scholar 

  15. Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445

    Article  PubMed  CAS  Google Scholar 

  16. Foster HA, Griffin DK, Bridger JM (2012) Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues. BMC Cell Biol 13:30

    Article  PubMed Central  PubMed  Google Scholar 

  17. Szczerbal I, Foster HA, Bridger JM (2009) The Spatial Repositioning of Adipogenesis Genes Is Correlated with Their Expression Status in a Porcine Mesenchymal Stem Cell Adipogenesis Model System. Chromosoma 118:647–663

    Article  PubMed  CAS  Google Scholar 

  18. Brown JM, Green J, das Neves RP, Wallace HA, Smith AJ, Hughes J, Gray N, Taylor S, Wood WG, Higgs DR, Iborra FJ, Buckle VJ (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182: 1083–1097

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Szczerbal I, Bridger JM (2010) Association of adipogenic genes with SC-35 domains during porcine adipogenesis. Chromosome Res 18:887–895

    Article  PubMed  CAS  Google Scholar 

  20. Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE, Fraser P (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5:e192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Xu M, Cook PR (2008) The role of specialized transcription factories in chromosome pairing. Biochim Biophys Acta 1783(11):2155–2160

    Article  PubMed  CAS  Google Scholar 

  22. Hofmann WA, Johnson T, Klapczynski M, Fan JL, de Lanerolle P (2006) From transcription to transport: emerging roles for nuclear myosin I. Biochem Cell Biol 84:418–426

    Article  PubMed  CAS  Google Scholar 

  23. Bridger JM (2011) Chromobility: the rapid movement of chromosomes in interphase nuclei. Biochem Soc Trans 39:1747–1751

    Article  PubMed  CAS  Google Scholar 

  24. Bridger JM, Mehta IS (2011) Nuclear Molecular Motors for Active, Directed Chromatin Movement in Interphase Nuclei. Springer, Advances in Nuclear Architecture. Eds Niall Adams and Paul Freemont

    Google Scholar 

  25. Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore WA (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4(3):e1000039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Arib G, Akhtar A (2011) Multiple facets of nuclear periphery in gene expression control. Curr Opin Cell Biol 23(3):346–353

    Article  PubMed  CAS  Google Scholar 

  27. Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T, Young AR, Narita M, Pérez-Mancera PA, Bennett DC, Chong H, Kimura H, Narita M (2013) Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27:1800–1808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Mewborn SK, Puckelwartz MJ, Abuisneineh F, Fahrenbach JP, Zhang Y, MacLeod H, Dellefave L, Pytel P, Selig S, Labno CM, Reddy K, Singh H, McNally E (2010) Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS ONE 5:e14342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152(3):584–598

    Article  PubMed  CAS  Google Scholar 

  30. Taimen P, Pfleghaar K, Shimi T, Moller D, Ben-Harush K, Erdos MR, Adam SA, Herrmann H, Medalia O, Collins FS, Goldman AE, Goldman RD (2009) A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc Natl Acad Sci U S A 106:20788–20793

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kubben N, Adriaens M, Meuleman W, Voncken J, van Steensel B, Misteli T (2012) Mapping of lamin A- and progerin-interacting genome regions. Chromosoma 121:447–464

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Zuleger N, Boyle S, Kelly DA, de Las Heras JI, Lazou V, Korfali N, Batrakou DG, Randles KN, Morris GE, Harrison DJ, Bickmore WA, Schirmer EC (2013) Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biol 14(2):R14

    Article  PubMed  Google Scholar 

  33. Dundr M, Ospina JK, Sung MH, John S, Upender M, Ried T, Hager GL, Matera AG (2007) Actin-dependent Intranuclear Repositioning of an Active Gene Locus in Vivo. J Cell Biol 179:1095–1103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Li C, Shi Z, Zhang L, Huang Y, Liu A, Jin Y, Yu Y, Bai J, Chen D, Gendron C, Liu X, Fu S (2010) Dynamic changes of territories 17 and 18 during EBV-infection of human lymphocytes. Mol Biol Rep 37(5):2347–2354

    Article  PubMed  CAS  Google Scholar 

  35. Poddighe PJ, Ramaekers FC, Smeets AW, Vooijs GP, Hopman AH (1992) Structural chromosome 1 aberrations in transitional cell carcinoma of the bladder: interphase cytogenetics combining a centromeric, telomeric, and library DNA probe. Cancer Res 52(18):4929–4934

    PubMed  CAS  Google Scholar 

  36. Cremer M, Kupper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Lukasova E, Kozubek S, Kozubek M, Kjeronska J, Ryznar L, Horakova J, Krahulcova E, Horneck G (1997) Localisation and distance between ABL and BCR genes in interphase nuclei of bone marrow cells of control donors and patients with chronic myeloid leukaemia. Hum Genet 100:525–535

    Article  PubMed  CAS  Google Scholar 

  38. Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5:R44

    Article  PubMed Central  PubMed  Google Scholar 

  39. Murata S, Nakazawa T, Ohno N, Terada N, Iwashina M, Mochizuki K, Kondo T, Nakamura N, Yamane T, Iwasa S, Ohno S, Katoh R (2007) Conservation and alteration of chromosome territory arrangements in thyroid carcinoma cell nuclei. Thyroid 17:489–496

    Article  PubMed  CAS  Google Scholar 

  40. Marella NV, Bhattacharya S, Mukherjee L, Xu J, Berezney R (2009) Cell type specific chromosome territory organization in the interphase nucleus of normal and cancer cells. J Cell Physiol 221:130–138

    Article  PubMed  CAS  Google Scholar 

  41. Wiech T, Timme S, Riede F, Stein S, Schuricke M, Cremer C, Werner M, Hausmann M, Walch A (2005) Human archival tissues provide a valuable source for the analysis of spatial genome organization. Histochem Cell Biol 123:229–238

    Article  PubMed  CAS  Google Scholar 

  42. Timme S, Schmitt E, Stein S, Schwarz-Finsterle J, Wagner J, Walch A, Werner M, Hausmann M, Wiech T (2011) Nuclear position and shape deformation of chromosome 8 territories in pancreatic ductal adenocarcinoma. Anal Cell Pathol (Amst) 34:21–33

    Google Scholar 

  43. Wiech T, Stein S, Lachenmaier V, Schmitt E, Schwarz-Finsterle J, Wiech E, Hildenbrand G, Werner M, Hausmann M (2009) Spatial allelic imbalance of BCL2 genes and chromosome 18 territories in nonneoplastic and neoplastic cervical squamous epithelium. Eur Biophys J 38:793–806

    Article  PubMed  CAS  Google Scholar 

  44. Bourne G, Moir C, Bikkul U, Hassan Ahmed M, Kill IR; Eskiw CH, Tosi S and Bridger JM (2013) Interphase chromosomes in disease. Human Interphase Chromosomes: the Biomedical Aspects Ed Yuri Yurov:Springer

    Google Scholar 

  45. Ballabio E, Cantarella CD, Federico C, Di Mare P, Hall G, Harbott J, Hughes J, Saccone S, Tosi S (2009) Ectopic Expression of the HLXB9 Gene Is Associated with an Altered Nuclear Position in T(7;12) Leukaemias. Leukemia 23:1179–1182

    Article  PubMed  CAS  Google Scholar 

  46. Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180:39–50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Meaburn KJ, Gudla PR, Khan S, Lockett SJ, Misteli T (2009) Disease-specific gene repositioning in breast cancer. J Cell Biol 187:801–812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Mehta IS, Amira M, Kill IR, Bridger JM (2008) Nuclear motors and nuclear structures containing A-type lamins and emerin: is there a functional link? Biochem Soc Trans 36:1384–1388

    Article  PubMed  CAS  Google Scholar 

  49. Elcock LS, Bridger JM (2010) Exploring the relationship between interphase gene positioning, transcriptional regulation and the nuclear matrix. Biochem Soc Trans 38:263–267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The unpublished work referred to in this chapter complied by the Bridger group has been funded by NIH, EU-FP6, Brunel University Progeria Research Fund, The Gordon Memorial Foundation, Wellcome Trust, WestFocus, and The Malacological Society of London. The authors would like to thank colleagues at Brunel—Dr Christopher Eskiw, Dr Margaret Town, Dr Sabrina Tosi, Dr Emmanouil Karteris for collaboration, collegiality, and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna M. Bridger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bridger, J.M. et al. (2014). The Non-random Repositioning of Whole Chromosomes and Individual Gene Loci in Interphase Nuclei and Its Relevance in Disease, Infection, Aging, and Cancer. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_12

Download citation

Publish with us

Policies and ethics