Advertisement

Nuclear Envelope: Connecting Structural Genome Organization to Regulation of Gene Expression

  • Irina Stancheva
  • Eric C. Schirmer
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 773)

Abstract

For many years, the nuclear envelope was viewed as a passive barrier that separates the genetic material in the nucleus from the cytoplasm of the cell and permits regulated trafficking of various molecules through the nuclear pores. Research in the past two decades has shown that the nuclear envelope is a complex cellular compartment, which harbors tissue-specific resident proteins, extensively interacts with chromatin and contributes to spatial genome organization and regulation of gene expression. Chromatin at the nuclear periphery is organized into active and silenced domains punctuated by insulator elements. The nuclear envelope transmembrane proteins and the nuclear lamina serve as anchoring sites for heterochromatin. They recruit chromatin that has been modified with specific epigenetic marks, provide silencing factors that add new epigenetic modifications to genes located at the nuclear periphery, and sequester transcription factors away from the nuclear interior. On the other hand, proteins of the nuclear pores anchor as well as help generate active chromatin, promote transcription, and coordinate gene expression with mRNA export. The importance of these functions is underscored by aberrant distribution of peripheral chromatin and changes in gene expression that occur in cancer and heritable human diseases linked to mutations in nuclear envelope proteins. Although many mechanistic questions addressing the role of the nuclear envelope in genome organization and function have been answered in recent years, a great deal remains to be discovered in this exciting and rapidly moving field.

Keywords

Nuclear envelope Nuclear lamina NPC Chromatin Gene expression Insulator Epigenetics Cancer 

Abbreviations

BAF

Barrier-to-autointegration factor

EDMD

Emery–Dreifuss muscular dystrophy

HP1

Heterochromatin protein 1

HDAC3

Histone deacetylase 3

HGPS

Hutchinson–Gilford progeria syndrome

INM

Inner nuclear membrane

IPTG

Isopropyl β-d-1-thiogalactopyranoside

lacO

Lac operator repeats

lacI

Bacterial lac repressor

NE

Nuclear envelope

NET

Nuclear envelope transmembrane protein

NPC

Nuclear pore complex

References

  1. 1.
    Callan HG, Tomlin SG (1950) Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc R Soc Lond B Biol Sci 137(888):367–378PubMedGoogle Scholar
  2. 2.
    Tapley EC, Starr DA (2013) Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr Opin Cell Biol 25(1):57–62, doi:S0955-0674(12)00177-9 [pii]  10.1016/j.ceb.2012.10.014 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Suntharalingam M, Wente SR (2003) Peering through the pore: nuclear pore complex structure, assembly, and function. Dev Cell 4(6):775–789PubMedGoogle Scholar
  4. 4.
    Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22(7):832–853PubMedCentralPubMedGoogle Scholar
  5. 5.
    Stuurman N, Heins S, Aebi U (1998) Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122(1–2):42–66PubMedGoogle Scholar
  6. 6.
    Schirmer EC, Foisner R (2007) Proteins that associate with lamins: many faces, many functions. Exp Cell Res 313(10):2167–2179PubMedGoogle Scholar
  7. 7.
    Mattout-Drubezki A, Gruenbaum Y (2003) Dynamic interactions of nuclear lamina proteins with chromatin and transcriptional machinery. Cell Mol Life Sci 60(10):2053–2063PubMedGoogle Scholar
  8. 8.
    Brown CR, Kennedy CJ, Delmar VA, Forbes DJ, Silver PA (2008) Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 22:627–639PubMedCentralPubMedGoogle Scholar
  9. 9.
    Makatsori D, Kourmouli N, Polioudaki H, Shultz LD, McLean K, Theodoropoulos PA, Singh PB, Georgatos SD (2004) The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279(24):25567–25573PubMedGoogle Scholar
  10. 10.
    Ye Q, Worman HJ (1996) Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271(25):14653–14656PubMedGoogle Scholar
  11. 11.
    Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B (2013) LBR and Lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152(3):584–598, doi:S0092-8674(13)00012-3 [pii] 10.1016/j.cell.2013.01.009 PubMedGoogle Scholar
  12. 12.
    Zullo JM, Demarco IA, Pique-Regi R, Gaffney DJ, Epstein CB, Spooner CJ, Luperchio TR, Bernstein BE, Pritchard JK, Reddy KL, Singh H (2012) DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149(7):1474–1487, doi:S0092-8674(12)00591-0 [pii] 10.1016/j.cell.2012.04.035 PubMedGoogle Scholar
  13. 13.
    Cronshaw J, Krutchinsky A, Zhang W, Chait B, Matunis M (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927PubMedCentralPubMedGoogle Scholar
  14. 14.
    Dreger M, Bengtsson L, Schoneberg T, Otto H, Hucho F (2001) Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci U S A 98(21):11943–11948PubMedCentralPubMedGoogle Scholar
  15. 15.
    Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148(4):635–651PubMedCentralPubMedGoogle Scholar
  16. 16.
    Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301(5638):1380–1382PubMedGoogle Scholar
  17. 17.
    Korfali N, Wilkie GS, Swanson SK, Srsen V, Batrakou DG, Fairley EA, Malik P, Zuleger N, Goncharevich A, de Las Heras J, Kelly DA, Kerr AR, Florens L, Schirmer EC (2010) The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture. Mol Cell Proteomics 9(12):2571–2585, doi:M110.002915 [pii] 10.1074/mcp.M110.002915 PubMedCentralPubMedGoogle Scholar
  18. 18.
    Korfali N, Wilkie GS, Swanson SK, Srsen V, de Las Heras J, Batrakou DG, Malik P, Zuleger N, Kerr AR, Florens L, Schirmer EC (2012) The nuclear envelope proteome differs notably between tissues. Nucleus 3(6):552–564, doi:22257 [pii] 10.4161/nucl.22257 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Wilkie GS, Korfali N, Swanson SK, Malik P, Srsen V, Batrakou DG, de Las Heras J, Zuleger N, Kerr AR, Florens L, Schirmer EC (2011) Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations. Mol Cell Proteomics 10(1):M110.003129, doi:M110.003129 [pii] 10.1074/mcp.M110.003129 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Zuleger N, Boyle S, Kelly DA, de Las Heras JI, Lazou V, Korfali N, Batrakou DG, Randles KN, Morris GE, Harrison DJ, Bickmore WA, Schirmer EC (2013) Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biol 14(2):R14, doi:gb-2013-14-2-r14 [pii] 10.1186/gb-2013-14-2-r14 PubMedGoogle Scholar
  21. 21.
    Fawcett DW (1981) The cell. Saunders, PhiladelphiaGoogle Scholar
  22. 22.
    Paddy MR, Belmont AS, Saumweber H, Agard DA, Sedat JW (1990) Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear periphery. Cell 62(1):89–106PubMedGoogle Scholar
  23. 23.
    Belmont AS, Zhai Y, Thilenius A (1993) Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J Cell Biol 123(6 Pt 2):1671–1685PubMedGoogle Scholar
  24. 24.
    Bouvier D, Hubert J, Seve AP, Bouteille M (1985) Characterization of lamina-bound chromatin in the nuclear shell isolated from HeLa cells. Exp Cell Res 156(2):500–512PubMedGoogle Scholar
  25. 25.
    Mirsky AE, Allfrey V (1960) Biochemical activities of the cell nucleus. Dis Nerv Syst 21(2)Suppl:23–28Google Scholar
  26. 26.
    Hirschhorn R, Decsy MI, Troll W (1971) The effect of PHA stimulation of human peripheral blood lymphocytes upon cellular content of euchromatin and heterochromatin. Cell Immunol 2(6):696–701PubMedGoogle Scholar
  27. 27.
    Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153(1):178–192, doi:S0092-8674(13)00217-1 [pii] 10.1016/j.cell.2013.02.028 PubMedGoogle Scholar
  28. 28.
    Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B (1999) Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108(4):220–234, doi:91080220.412 [pii]PubMedGoogle Scholar
  29. 29.
    Rabl C (1885) Über Zelltheilung. Morphol Jahrb 10:214–330Google Scholar
  30. 30.
    Cowan CR, Carlton PM, Cande WZ (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol 125(2):532–538PubMedCentralPubMedGoogle Scholar
  31. 31.
    Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137(1):5–18PubMedCentralPubMedGoogle Scholar
  32. 32.
    Scherthan H, Weich S, Schwegler H, Heyting C, Harle M, Cremer T (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134(5):1109–1125PubMedGoogle Scholar
  33. 33.
    Aquiles Sanchez J, Karni RJ, Wangh LJ (1997) Fluorescent in situ hybridization (FISH) analysis of the relationship between chromosome location and nuclear morphology in human neutrophils. Chromosoma 106(3):168–177PubMedGoogle Scholar
  34. 34.
    Galy V, Olivo-Marin JC, Scherthan H, Doye V, Rascalou N, Nehrbass U (2000) Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403(6765):108–112PubMedGoogle Scholar
  35. 35.
    Scherthan H, Jerratsch M, Li B, Smith S, Hulten M, Lock T, de Lange T (2000) Mammalian meiotic telomeres: protein composition and redistribution in relation to nuclear pores. Mol Biol Cell 11(12):4189–4203PubMedCentralPubMedGoogle Scholar
  36. 36.
    Schmitt J, Benavente R, Hodzic D, Hoog C, Stewart CL, Alsheimer M (2007) Transmembrane protein Sun2 is involved in tethering mammalian meiotic telomeres to the nuclear envelope. Proc Natl Acad Sci U S A 104(18):7426–7431PubMedCentralPubMedGoogle Scholar
  37. 37.
    Bupp JM, Martin AE, Stensrud ES, Jaspersen SL (2007) Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J Cell Biol 179(5):845–854, doi:jcb.200706040 [pii] 10.1083/jcb.200706040 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y (2006) Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125(1):59–69, doi:S0092-8674(06)00318-7 [pii] 10.1016/j.cell.2006.01.048 PubMedGoogle Scholar
  39. 39.
    Conrad MN, Lee CY, Wilkerson JL, Dresser ME (2007) MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104(21):8863–8868PubMedCentralPubMedGoogle Scholar
  40. 40.
    Hou H, Zhou Z, Wang Y, Wang J, Kallgren SP, Kurchuk T, Miller EA, Chang F, Jia S (2012) Csi1 links centromeres to the nuclear envelope for centromere clustering. J Cell Biol 199(5):735–744, doi:jcb.201208001 [pii] 10.1083/jcb.201208001 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Baricheva EA, Berrios M, Bogachev SS, Borisevich IV, Lapik ER, Sharakhov IV, Stuurman N, Fisher PA (1996) DNA from Drosophila melanogaster beta-heterochromatin binds specifically to nuclear lamins in vitro and the nuclear envelope in situ. Gene 171(2):171–176PubMedGoogle Scholar
  42. 42.
    Shoeman RL, Traub P (1990) The in vitro DNA-binding properties of purified nuclear lamin proteins and vimentin. J Biol Chem 265(16):9055–9061PubMedGoogle Scholar
  43. 43.
    Boveri T (1909) Die blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomen-indiviüalitat. Arch Zellforsch 3:181–268Google Scholar
  44. 44.
    Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145(6):1119–1131PubMedCentralPubMedGoogle Scholar
  45. 45.
    Bickmore WA, Teague P (2002) Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res 10(8):707–715PubMedGoogle Scholar
  46. 46.
    Cremer M, Kupper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162(5):809–820, doi: 10.1083/jcb.200304096jcb.200304096 [pii]PubMedCentralPubMedGoogle Scholar
  47. 47.
    Meaburn KJ, Newbold RF, Bridger JM (2008) Positioning of human chromosomes in murine cell hybrids according to synteny. Chromosoma 117(6):579–591PubMedGoogle Scholar
  48. 48.
    Kim SH, McQueen PG, Lichtman MK, Shevach EM, Parada LA, Misteli T (2004) Spatial genome organization during T-cell differentiation. Cytogenet Genome Res 105(2–4):292–301PubMedGoogle Scholar
  49. 49.
    Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5(7):R44PubMedCentralPubMedGoogle Scholar
  50. 50.
    Parada LA, McQueen PG, Munson PJ, Misteli T (2002) Conservation of relative chromosome positioning in normal and cancer cells. Curr Biol 12(19):1692–1697PubMedGoogle Scholar
  51. 51.
    Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2):356–368, doi:S0092-8674(09)00137-8 [pii] 10.1016/j.cell.2009.01.052 PubMedGoogle Scholar
  52. 52.
    Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7(5):825–842PubMedCentralPubMedGoogle Scholar
  53. 53.
    Kosak ST, Skok JA, Medina KL, Riblet R, Le Beau MM, Fisher AG, Singh H (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296(5565):158–162PubMedGoogle Scholar
  54. 54.
    Williams RR, Azuara V, Perry P, Sauer S, Dvorkina M, Jorgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher AG (2006) Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci 119(Pt 1):132–140PubMedGoogle Scholar
  55. 55.
    Szczerbal I, Foster HA, Bridger JM (2009) The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma 118(5):647–663. doi: 10.1007/s00412-009-0225-5 PubMedGoogle Scholar
  56. 56.
    Zink D, Amaral MD, Englmann A, Lang S, Clarke LA, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166(6):815–825PubMedCentralPubMedGoogle Scholar
  57. 57.
    Nielsen JA, Hudson LD, Armstrong RC (2002) Nuclear organization in differentiating oligodendrocytes. J Cell Sci 115(Pt 21):4071–4079PubMedGoogle Scholar
  58. 58.
    Hewitt SL, High FA, Reiner SL, Fisher AG, Merkenschlager M (2004) Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur J Immunol 34(12):3604–3613PubMedGoogle Scholar
  59. 59.
    Park PC, De Boni U (1998) A specific conformation of the territory of chromosome 17 locates ERBB-2 sequences to a DNase-hypersensitive domain at the nuclear periphery. Chromosoma 107(2):87–95PubMedGoogle Scholar
  60. 60.
    Johnson C, Primorac D, McKinstry M, McNeil J, Rowe D, Lawrence JB (2000) Tracking COL1A1 RNA in osteogenesis imperfecta. splice-defective transcripts initiate transport from the gene but are retained within the SC35 domain. J Cell Biol 150(3):417–432PubMedCentralPubMedGoogle Scholar
  61. 61.
    Morey C, Da Silva NR, Kmita M, Duboule D, Bickmore WA (2008) Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into Hoxd. J Cell Sci 121(Pt 5):571–577, doi:jcs.023234 [pii] 10.1242/jcs.023234 PubMedCentralPubMedGoogle Scholar
  62. 62.
    Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Kupper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T (2006) Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 14(7):707–733PubMedGoogle Scholar
  63. 63.
    Morey C, Da Silva NR, Perry P, Bickmore WA (2007) Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134(5):909–919. doi: 10.1242/dev.02779 PubMedGoogle Scholar
  64. 64.
    Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128(4):787–800. doi: 10.1016/j.cell.2007.01.028 PubMedGoogle Scholar
  65. 65.
    Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore WA (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4(3):e1000039PubMedCentralPubMedGoogle Scholar
  66. 66.
    Kumaran RI, Spector DL (2008) A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol 180(1):51–65PubMedCentralPubMedGoogle Scholar
  67. 67.
    Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452(7184):243–247PubMedGoogle Scholar
  68. 68.
    Clowney EJ, LeGros MA, Mosley CP, Clowney FG, Markenskoff-Papadimitriou EC, Myllys M, Barnea G, Larabell CA, Lomvardas S (2012) Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151(4):724–737, doi:S0092-8674(12)01286-X [pii] 10.1016/j.cell.2012.09.043 PubMedCentralPubMedGoogle Scholar
  69. 69.
    Schirmer EC, Gerace L (2004) The stability of the nuclear lamina polymer changes with the composition of lamin subtypes according to their individual binding strengths. J Biol Chem 279(41):42811–42817PubMedGoogle Scholar
  70. 70.
    Hoger TH, Krohne G, Kleinschmidt JA (1991) Interaction of Xenopus lamins A and LII with chromatin in vitro mediated by a sequence element in the carboxyterminal domain. Exp Cell Res 197(2):280–289PubMedGoogle Scholar
  71. 71.
    Taniura H, Glass C, Gerace L (1995) A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J Cell Biol 131(1):33–44PubMedGoogle Scholar
  72. 72.
    Goldberg M, Harel A, Brandeis M, Rechsteiner T, Richmond TJ, Weiss AM, Gruenbaum Y (1999) The tail domain of lamin Dm0 binds histones H2A and H2B. Proc Natl Acad Sci U S A 96(6):2852–2857PubMedCentralPubMedGoogle Scholar
  73. 73.
    Luderus ME, den Blaauwen JL, de Smit OJ, Compton DA, van Driel R (1994) Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol Cell Biol 14(9):6297–6305PubMedCentralPubMedGoogle Scholar
  74. 74.
    Luderus ME, de Graaf A, Mattia E, den Blaauwen JL, Grande MA, de Jong L, van Driel R (1992) Binding of matrix attachment regions to lamin B1. Cell 70(6):949–959PubMedGoogle Scholar
  75. 75.
    Rzepecki R, Bogachev SS, Kokoza E, Stuurman N, Fisher PA (1998) In vivo association of lamins with nucleic acids in Drosophila melanogaster. J Cell Sci 111(Pt 1):121–129PubMedGoogle Scholar
  76. 76.
    Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y (2000) Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci 113(Pt 5):779–794PubMedGoogle Scholar
  77. 77.
    Polioudaki H, Kourmouli N, Drosou V, Bakou A, Theodoropoulos PA, Singh PB, Giannakouros T, Georgatos SD (2001) Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1. EMBO Rep 2(10):920–925PubMedCentralPubMedGoogle Scholar
  78. 78.
    Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120. doi: 10.1038/35065132 PubMedGoogle Scholar
  79. 79.
    Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124. doi: 10.1038/35065138 PubMedGoogle Scholar
  80. 80.
    Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73(7):1267–1279PubMedGoogle Scholar
  81. 81.
    Furukawa K (1999) LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction. J Cell Sci 112(Pt 15):2485–2492PubMedGoogle Scholar
  82. 82.
    Cai M, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM (2001) Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. EMBO J 20(16):4399–4407PubMedCentralPubMedGoogle Scholar
  83. 83.
    Zheng R, Ghirlando R, Lee MS, Mizuuchi K, Krause M, Craigie R (2000) Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc Natl Acad Sci U S A 97(16):8997–9002PubMedCentralPubMedGoogle Scholar
  84. 84.
    Montes de Oca R, Lee KK, Wilson KL (2005) Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J Biol Chem 280(51):42252–42262PubMedGoogle Scholar
  85. 85.
    Caputo S, Couprie J, Duband-Goulet I, Konde E, Lin F, Braud S, Gondry M, Gilquin B, Worman HJ, Zinn-Justin S (2006) The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. J Biol Chem 281(26):18208–18215PubMedGoogle Scholar
  86. 86.
    Gerasimova TI, Byrd K, Corces VG (2000) A chromatin insulator determines the nuclear localization of DNA. Mol Cell 6(5):1025–1035PubMedGoogle Scholar
  87. 87.
    Sun FL, Elgin SC (1999) Putting boundaries on silence. Cell 99(5):459–462PubMedGoogle Scholar
  88. 88.
    Ramos E, Ghosh D, Baxter E, Corces VG (2006) Genomic organization of gypsy chromatin insulators in Drosophila melanogaster. Genetics 172(4):2337–2349. doi: 10.1534/genetics.105.054742 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Yang J, Corces VG (2012) Insulators, long-range interactions, and genome function. Curr Opin Genet Dev 22(2):86–92. doi: 10.1016/j.gde.2011.12.007 PubMedCentralPubMedGoogle Scholar
  90. 90.
    Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98(3):387–396PubMedGoogle Scholar
  91. 91.
    Loukinov DI, Pugacheva E, Vatolin S, Pack SD, Moon H, Chernukhin I, Mannan P, Larsson E, Kanduri C, Vostrov AA, Cui H, Niemitz EL, Rasko JE, Docquier FM, Kistler M, Breen JJ, Zhuang Z, Quitschke WW, Renkawitz R, Klenova EM, Feinberg AP, Ohlsson R, Morse HC 3rd, Lobanenkov VV (2002) BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A 99(10):6806–6811. doi: 10.1073/pnas.092123699 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Handoko L, Xu H, Li G, Ngan CY, Chew E, Schnapp M, Lee CW, Ye C, Ping JL, Mulawadi F, Wong E, Sheng J, Zhang Y, Poh T, Chan CS, Kunarso G, Shahab A, Bourque G, Cacheux-Rataboul V, Sung WK, Ruan Y, Wei CL (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet 43(7):630–638. doi: 10.1038/ng.857 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38(9):1005–1014PubMedGoogle Scholar
  94. 94.
    Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951, doi:nature06947 [pii] 10.1038/nature06947 PubMedGoogle Scholar
  95. 95.
    Kind J, van Steensel B (2010) Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol 22(3):320–325, doi:S0955-0674(10)00054-2 [pii] 10.1016/j.ceb.2010.04.002 PubMedGoogle Scholar
  96. 96.
    Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Graf S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38(4):603–613, doi:S1097-2765(10)00321-7 [pii] 10.1016/j.molcel.2010.03.016 PubMedGoogle Scholar
  97. 97.
    Lienert F, Mohn F, Tiwari VK, Baubec T, Roloff TC, Gaidatzis D, Stadler MB, Schubeler D (2011) Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet 7(6):e1002090. doi: 10.1371/journal.pgen.1002090 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41(2):246–250. doi: 10.1038/ng.297 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Lee KK, Haraguchi T, Lee RS, Koujin T, Hiraoka Y, Wilson KL (2001) Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J Cell Sci 114(Pt 24):4567–4573PubMedGoogle Scholar
  100. 100.
    Mansharamani M, Wilson KL (2005) Direct binding of nuclear membrane protein MAN1 to emerin in vitro and two modes of binding to barrier-to-autointegration factor. J Biol Chem 280(14):13863–13870PubMedGoogle Scholar
  101. 101.
    Montes de Oca R, Shoemaker CJ, Gucek M, Cole RN, Wilson KL (2009) Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS One 4(9):e7050. doi: 10.1371/journal.pone.0007050 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Holaska JM, Wilson KL (2007) An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 46(30):8897–8908. doi: 10.1021/bi602636m PubMedCentralPubMedGoogle Scholar
  103. 103.
    Somech R, Shaklai S, Geller O, Amariglio N, Simon AJ, Rechavi G, Gal-Yam EN (2005) The nuclear-envelope protein and transcriptional repressor LAP2beta interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation. J Cell Sci 118(Pt 17):4017–4025. doi: 10.1242/jcs.02521 PubMedGoogle Scholar
  104. 104.
    Dechat T, Gajewski A, Korbei B, Gerlich D, Daigle N, Haraguchi T, Furukawa K, Ellenberg J, Foisner R (2004) LAP2alpha and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J Cell Sci 117(Pt 25):6117–6128PubMedGoogle Scholar
  105. 105.
    Suzuki Y, Yang H, Craigie R (2004) LAP2alpha and BAF collaborate to organize the Moloney murine leukemia virus preintegration complex. EMBO J 23(23):4670–4678PubMedCentralPubMedGoogle Scholar
  106. 106.
    Shaklai S, Somech R, Gal-Yam EN, Deshet-Unger N, Moshitch-Moshkovitz S, Hirschberg K, Amariglio N, Simon AJ, Rechavi G (2008) LAP2zeta binds BAF and suppresses LAP2beta-mediated transcriptional repression. Eur J Cell Biol 87(5):267–278PubMedGoogle Scholar
  107. 107.
    Malhas AN, Lee CF, Vaux DJ (2009) Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 184(1):45–55. doi: 10.1083/jcb.200804155 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Chi YH, Haller K, Peloponese JM Jr, Jeang KT (2007) Histone acetyltransferase hALP and nuclear membrane protein hsSUN1 function in de-condensation of mitotic chromosomes. J Biol Chem 282(37):27447–27458PubMedGoogle Scholar
  109. 109.
    Jarnik M, Aebi U (1991) Toward a more complete 3-D structure of the nuclear pore complex. J Struct Biol 107(3):291–308PubMedGoogle Scholar
  110. 110.
    Guan T, Kehlenbach RH, Schirmer EC, Kehlenbach A, Fan F, Clurman BE, Arnheim N, Gerace L (2000) Nup50, a nucleoplasmically oriented nucleoporin with a role in nuclear protein export. Mol Cell Biol 20(15):5619–5630PubMedCentralPubMedGoogle Scholar
  111. 111.
    Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336. doi: 10.1126/science.1156947 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Laroche T, Martin SG, Gotta M, Gorham HC, Pryde FE, Louis EJ, Gasser SM (1998) Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol 8(11):653–656PubMedGoogle Scholar
  113. 113.
    Maillet L, Gaden F, Brevet V, Fourel G, Martin SG, Dubrana K, Gasser SM, Gilson E (2001) Ku-deficient yeast strains exhibit alternative states of silencing competence. EMBO Rep 2(3):203–210PubMedCentralPubMedGoogle Scholar
  114. 114.
    Feuerbach F, Galy V, Trelles-Sticken E, Fromont-Racine M, Jacquier A, Gilson E, Olivo-Marin JC, Scherthan H, Nehrbass U (2002) Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast. Nat Cell Biol 4(3):214–221PubMedGoogle Scholar
  115. 115.
    Gartenberg MR, Neumann FR, Laroche T, Blaszczyk M, Gasser SM (2004) Sir-mediated repression can occur independently of chromosomal and subnuclear contexts. Cell 119(7):955–967PubMedGoogle Scholar
  116. 116.
    Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8(7):507–517PubMedGoogle Scholar
  117. 117.
    Vaquerizas JM, Suyama R, Kind J, Miura K, Luscombe NM, Akhtar A (2010) Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet 6(2):e1000846. doi: 10.1371/journal.pgen.1000846 PubMedCentralPubMedGoogle Scholar
  118. 118.
    Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3):372–383, doi:S0092-8674(09)01681-X [pii] 10.1016/j.cell.2009.12.054 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Kalverda B, Pickersgill H, Shloma VV, Fornerod M (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3):360–371, doi:S0092-8674(10)00012-7 [pii] 10.1016/j.cell.2010.01.011 PubMedGoogle Scholar
  120. 120.
    Luthra R, Kerr SC, Harreman MT, Apponi LH, Fasken MB, Ramineni S, Chaurasia S, Valentini SR, Corbett AH (2007) Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem 282(5):3042–3049. doi: 10.1074/jbc.M608741200 PubMedGoogle Scholar
  121. 121.
    Baker SP, Grant PA (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26(37):5329–5340. doi: 10.1038/sj.onc.1210603 PubMedCentralPubMedGoogle Scholar
  122. 122.
    Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26(37):5341–5357. doi: 10.1038/sj.onc.1210604 PubMedGoogle Scholar
  123. 123.
    Rodriguez-Navarro S, Fischer T, Luo MJ, Antunez O, Brettschneider S, Lechner J, Perez-Ortin JE, Reed R, Hurt E (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116(1):75–86PubMedGoogle Scholar
  124. 124.
    Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin JC, Hurt EC, Nehrbass U (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441(7094):770–773. doi: 10.1038/nature04752 PubMedGoogle Scholar
  125. 125.
    Pascual-Garcia P, Govind CK, Queralt E, Cuenca-Bono B, Llopis A, Chavez S, Hinnebusch AG, Rodriguez-Navarro S (2008) Sus1 is recruited to coding regions and functions during transcription elongation in association with SAGA and TREX2. Genes Dev 22(20):2811–2822. doi: 10.1101/gad.483308 PubMedCentralPubMedGoogle Scholar
  126. 126.
    Klockner C, Schneider M, Lutz S, Jani D, Kressler D, Stewart M, Hurt E, Kohler A (2009) Mutational uncoupling of the role of Sus1 in nuclear pore complex targeting of an mRNA export complex and histone H2B deubiquitination. J Biol Chem 284(18):12049–12056. doi: 10.1074/jbc.M900502200 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Rodriguez-Navarro S (2009) Insights into SAGA function during gene expression. EMBO Rep 10(8):843–850. doi: 10.1038/embor.2009.168 PubMedCentralPubMedGoogle Scholar
  128. 128.
    Kurshakova MM, Krasnov AN, Kopytova DV, Shidlovskii YV, Nikolenko JV, Nabirochkina EN, Spehner D, Schultz P, Tora L, Georgieva SG (2007) SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J 26(24):4956–4965. doi: 10.1038/sj.emboj.7601901 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Kurshakova M, Maksimenko O, Golovnin A, Pulina M, Georgieva S, Georgiev P, Krasnov A (2007) Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol Cell 27(2):332–338. doi: 10.1016/j.molcel.2007.05.035 PubMedGoogle Scholar
  130. 130.
    Wickramasinghe VO, McMurtrie PI, Mills AD, Takei Y, Penrhyn-Lowe S, Amagase Y, Main S, Marr J, Stewart M, Laskey RA (2010) mRNA export from mammalian cell nuclei is dependent on GANP. Curr Biol 20(1):25–31. doi: 10.1016/j.cub.2009.10.078 PubMedCentralPubMedGoogle Scholar
  131. 131.
    Jani D, Lutz S, Marshall NJ, Fischer T, Kohler A, Ellisdon AM, Hurt E, Stewart M (2009) Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol Cell 33(6):727–737. doi: 10.1016/j.molcel.2009.01.033 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117(4):427–439PubMedGoogle Scholar
  133. 133.
    Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21(6):811–823. doi: 10.1016/j.molcel.2006.02.007 PubMedGoogle Scholar
  134. 134.
    Ishii K, Arib G, Lin C, Van Houwe G, Laemmli UK (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109(5):551–562PubMedGoogle Scholar
  135. 135.
    Gerasimova TI, Corces VG (2001) Chromatin insulators and boundaries: effects on transcription and nuclear organization. Annu Rev Genet 35:193–208. doi: 10.1146/annurev.genet.35.102401.090349 PubMedGoogle Scholar
  136. 136.
    Oki M, Valenzuela L, Chiba T, Ito T, Kamakaka RT (2004) Barrier proteins remodel and modify chromatin to restrict silenced domains. Mol Cell Biol 24(5):1956–1967PubMedCentralPubMedGoogle Scholar
  137. 137.
    Dilworth DJ, Tackett AJ, Rogers RS, Yi EC, Christmas RH, Smith JJ, Siegel AF, Chait BT, Wozniak RW, Aitchison JD (2005) The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. J Cell Biol 171(6):955–965PubMedCentralPubMedGoogle Scholar
  138. 138.
    Luk E, Ranjan A, Fitzgerald PC, Mizuguchi G, Huang Y, Wei D, Wu C (2010) Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143(5):725–736. doi: 10.1016/j.cell.2010.10.019 PubMedGoogle Scholar
  139. 139.
    Li B, Pattenden SG, Lee D, Gutierrez J, Chen J, Seidel C, Gerton J, Workman JL (2005) Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci U S A 102(51):18385–18390. doi: 10.1073/pnas.0507975102 PubMedCentralPubMedGoogle Scholar
  140. 140.
    Jacobson S, Pillus L (2009) The SAGA subunit Ada2 functions in transcriptional silencing. Mol Cell Biol 29(22):6033–6045. doi: 10.1128/MCB.00542-09 PubMedCentralPubMedGoogle Scholar
  141. 141.
    Holaska JM, Lee K, Kowalski AK, Wilson KL (2003) Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. J Biol Chem 278(9):6969–6975PubMedGoogle Scholar
  142. 142.
    Nili E, Cojocaru GS, Kalma Y, Ginsberg D, Copeland NG, Gilbert DJ, Jenkins NA, Berger R, Shaklai S, Amariglio N, Brok-Simoni F, Simon AJ, Rechavi G (2001) Nuclear membrane protein LAP2beta mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J Cell Sci 114(18):3297–3307PubMedGoogle Scholar
  143. 143.
    Haraguchi T, Holaska JM, Yamane M, Koujin T, Hashiguchi N, Mori C, Wilson KL, Hiraoka Y (2004) Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery-Dreifuss muscular dystrophy. Eur J Biochem 271(5):1035–1045PubMedGoogle Scholar
  144. 144.
    Ozaki T, Saijo M, Murakami K, Enomoto H, Taya Y, Sakiyama S (1994) Complex formation between lamin A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene 9(9):2649–2653PubMedGoogle Scholar
  145. 145.
    Markiewicz E, Dechat T, Foisner R, Quinlan R, Hutchison C (2002) Lamin A/C binding protein LAP2alpha is required for nuclear anchorage of retinoblastoma protein. Mol Biol Cell 13(12):4401–4413PubMedCentralPubMedGoogle Scholar
  146. 146.
    Naetar N, Korbei B, Kozlov S, Kerenyi MA, Dorner D, Kral R, Gotic I, Fuchs P, Cohen TV, Bittner R, Stewart CL, Foisner R (2008) Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 10(11):1341–1348, doi:ncb1793 [pii] 10.1038/ncb1793 PubMedGoogle Scholar
  147. 147.
    Gerace L, Burke B (1988) Functional organization of the nuclear envelope. Annu Rev Cell Biol 4:335–374PubMedGoogle Scholar
  148. 148.
    Ivorra C, Kubicek M, Gonzalez JM, Sanz-Gonzalez SM, Alvarez-Barrientos A, O’Connor JE, Burke B, Andres V (2006) A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev 20(3):307–320, doi:20/3/307 [pii] 10.1101/gad.349506 PubMedCentralPubMedGoogle Scholar
  149. 149.
    Holaska JM, Rais-Bahrami S, Wilson KL (2006) Lmo7 is an emerin-binding protein that regulates the transcription of emerin and many other muscle-relevant genes. Hum Mol Genet 15(23):3459–3472PubMedGoogle Scholar
  150. 150.
    Osada S, Ohmori SY, Taira M (2003) XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development 130(9):1783–1794PubMedGoogle Scholar
  151. 151.
    Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 280(16):15992–16001PubMedGoogle Scholar
  152. 152.
    Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291(5505):843–847PubMedGoogle Scholar
  153. 153.
    Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA, Sedat JW (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7(12):930–939, doi:S0960-9822(06)00412-X [pii]PubMedGoogle Scholar
  154. 154.
    Strickfaden H, Zunhammer A, van Koningsbruggen S, Kohler D, Cremer T (2010) 4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited. Nucleus 1(3):284–297. doi: 10.4161/nucl.1.3.11969 PubMedCentralPubMedGoogle Scholar
  155. 155.
    Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12(6):439–445PubMedGoogle Scholar
  156. 156.
    Zink D, Bornfleth H, Visser A, Cremer C, Cremer T (1999) Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 247(1):176–188PubMedGoogle Scholar
  157. 157.
    Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113(1):155–160PubMedGoogle Scholar
  158. 158.
    Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172(1):41–53PubMedCentralPubMedGoogle Scholar
  159. 159.
    Starr DA, Fischer JA (2005) KASH ‘n Karry: the KASH domain family of cargo-specific cytoskeletal adaptor proteins. Bioessays 27(11):1136–1146PubMedGoogle Scholar
  160. 160.
    Lammerding J, Schulze P, Takahashi T, Kozlov S, Sullivan T, Kamm R, Stewart C, Lee R (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113(3):370–378PubMedCentralPubMedGoogle Scholar
  161. 161.
    Liu J, Ben-Shahar T, Riemer D, Treinin M, Spann P, Weber K, Fire A, Gruenbaum Y (2000) Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol Biol Cell 11(11):3937–3947PubMedCentralPubMedGoogle Scholar
  162. 162.
    Schirmer EC, Guan T, Gerace L (2001) Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organization. J Cell Biol 153(3):479–489PubMedCentralPubMedGoogle Scholar
  163. 163.
    Lenz-Bohme B, Wismar J, Fuchs S, Reifegerste R, Buchner E, Betz H, Schmitt B (1997) Insertional mutation of the Drosophila nuclear lamin Dm0 gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J Cell Biol 137(5):1001–1016PubMedCentralPubMedGoogle Scholar
  164. 164.
    Capell BC, Collins FS (2006) Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 7(12):940–952PubMedGoogle Scholar
  165. 165.
    Foisner R, Aebi U, Bonne G, Gruenbaum Y, Novelli G (2007) 141st ENMC International Workshop inaugural meeting of the EURO-Laminopathies project “Nuclear Envelope-linked Rare Human Diseases: From Molecular Pathophysiology towards Clinical Applications”, 10-12 March 2006, Naarden, The Netherlands. Neuromuscul Disord 17(8):655–660PubMedGoogle Scholar
  166. 166.
    Worman HJ, Bonne G (2007) “Laminopathies”: a wide spectrum of human diseases. Exp Cell Res 313(10):2121–2133PubMedCentralPubMedGoogle Scholar
  167. 167.
    Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21(3):285–288PubMedGoogle Scholar
  168. 168.
    Raffaele Di Barletta M, Ricci E, Galluzzi G, Tonali P, Mora M, Morandi L, Romorini A, Voit T, Orstavik KH, Merlini L, Trevisan C, Biancalana V, Housmanowa-Petrusewicz I, Bione S, Ricotti R, Schwartz K, Bonne G, Toniolo D (2000) Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J Hum Genet 66(4):1407–1412PubMedCentralPubMedGoogle Scholar
  169. 169.
    Muchir A, Bonne G, van der Kooi AJ, van Meegen M, Baas F, Bolhuis PA, de Visser M, Schwartz K (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 9(9):1453–1459PubMedGoogle Scholar
  170. 170.
    Cao H, Hegele RA (2000) Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 9(1):109–112PubMedGoogle Scholar
  171. 171.
    Hegele RA, Cao H, Liu DM, Costain GA, Charlton-Menys V, Rodger NW, Durrington PN (2006) Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am J Hum Genet 79(2):383–389PubMedCentralPubMedGoogle Scholar
  172. 172.
    Shackleton S, Lloyd DJ, Jackson SN, Evans R, Niermeijer MF, Singh BM, Schmidt H, Brabant G, Kumar S, Durrington PN, Gregory S, O’Rahilly S, Trembath RC (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 24(2):153–156PubMedGoogle Scholar
  173. 173.
    De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat J, Tazir M, Kassouri N, Szepetowski P, Hammadouche T, Vandenberghe A, Stewart C, Grid D, Levy N (2002) Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 70(3):726–736PubMedCentralPubMedGoogle Scholar
  174. 174.
    Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T, Koeppen A, Hogan K, Ptacek LJ, Fu YH (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38(10):1114–1123PubMedGoogle Scholar
  175. 175.
    Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ Jr, Spudich S, De Girolami U, Seidman JG, Seidman C, Muntoni F, Muehle G, Johnson W, McDonough B (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease [see comments]. N Engl J Med 341(23):1715–1724PubMedGoogle Scholar
  176. 176.
    Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I, Boyer A, Genevieve D, Hadj-Rabia S, Gaudy-Marqueste C, Smitt HS, Vabres P, Faivre L, Verloes A, Van Essen T, Flori E, Hennekam R, Beemer FA, Laurent N, Le Merrer M, Cau P, Levy N (2004) Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet 13(20):2493–2503PubMedGoogle Scholar
  177. 177.
    Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298PubMedGoogle Scholar
  178. 178.
    De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart C, Munnich A, Le Merrer M, Levy N (2003) Lamin A truncation in Hutchinson-Gilford progeria. Science 300(5628):2055PubMedGoogle Scholar
  179. 179.
    Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8(4):323–327PubMedGoogle Scholar
  180. 180.
    Taylor MR, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR, Carniel E, Di Lenarda A, Sinagra G, Boucek MM, Cavanaugh J, Graw SL, Ruegg P, Feiger J, Zhu X, Ferguson DA, Bristow MR, Gotzmann J, Foisner R, Mestroni L (2005) Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 26(6):566–574PubMedGoogle Scholar
  181. 181.
    Zhang Q, Bethmann C, Worth NF, Davies JD, Wasner C, Feuer A, Ragnauth CD, Yi Q, Mellad JA, Warren DT, Wheeler MA, Ellis JA, Skepper JN, Vorgerd M, Schlotter-Weigel B, Weissberg PL, Roberts RG, Wehnert M, Shanahan CM (2007) Nesprin-1 and -2 are involved in the pathogenesis of Emery-Dreifuss Muscular Dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16(23):2816–2833PubMedGoogle Scholar
  182. 182.
    Cronshaw JM, Matunis MJ (2003) The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc Natl Acad Sci U S A 100(10):5823–5827PubMedCentralPubMedGoogle Scholar
  183. 183.
    Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen SJ, Savarirayan R, Van Hul W, Vanhoenacker F, Huylebroeck D, De Paepe A, Naeyaert JM, Vandesompele J, Speleman F, Verschueren K, Coucke PJ, Mortier GR (2004) Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet 36(11):1213–1218PubMedGoogle Scholar
  184. 184.
    Waterham H, Koster J, Mooyer P, Noort GG, Kelley R, Wilcox W, Wanders R, Hennekam R, Oosterwijk J (2003) Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3beta-hydroxysterol delta14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum Genet 72(4):1013–1017PubMedCentralPubMedGoogle Scholar
  185. 185.
    Gros-Louis F, Dupre N, Dion P, Fox MA, Laurent S, Verreault S, Sanes JR, Bouchard JP, Rouleau GA (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39(1):80–85PubMedGoogle Scholar
  186. 186.
    Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, Walsh CA, Magal N, Taub E, Drasinover V, Shalev H, Attia R, Rechavi G, Simon AJ, Shohat M (2006) Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 60(2):214–222PubMedGoogle Scholar
  187. 187.
    Gonzalez-Alegre P, Paulson HL (2004) Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci 24(11):2593–2601PubMedGoogle Scholar
  188. 188.
    Naismith TV, Heuser JE, Breakefield XO, Hanson PI (2004) TorsinA in the nuclear envelope. Proc Natl Acad Sci U S A 101(20):7612–7617PubMedCentralPubMedGoogle Scholar
  189. 189.
    Goodchild RE, Dauer WT (2004) Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc Natl Acad Sci U S A 101(3):847–852PubMedCentralPubMedGoogle Scholar
  190. 190.
    Hoffmann K, Dreger C, Olins A, Olins D, Shultz L, Lucke B, Karl H, Kaps R, Muller D, Vaya A, Aznar J, Ware R, Sotelo Cruz N, Lindner T, Herrmann H, Reis A, Sperling K (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet 31(4):410–414PubMedGoogle Scholar
  191. 191.
    Fidzianska A, Toniolo D, Hausmanowa-Petrusewicz I (1998) Ultrastructural abnormality of sarcolemmal nuclei in Emery-Dreifuss muscular dystrophy (EDMD). J Neurol Sci 159(1):88–93PubMedGoogle Scholar
  192. 192.
    Sewry CA, Brown SC, Mercuri E, Bonne G, Feng L, Camici G, Morris GE, Muntoni F (2001) Skeletal muscle pathology in autosomal dominant Emery-Dreifuss muscular dystrophy with lamin A/C mutations. Neuropathol Appl Neurobiol 27(4):281–290PubMedGoogle Scholar
  193. 193.
    Maraldi NM, Lattanzi G, Capanni C, Columbaro M, Mattioli E, Sabatelli P, Squarzoni S, Manzoli FA (2006) Laminopathies: a chromatin affair. Adv Enzyme Regul 46:33–49, doi:S0065-2571(06)00002-1 [pii] 10.1016/j.advenzreg.2006.01.001 PubMedGoogle Scholar
  194. 194.
    Verga L, Concardi M, Pilotto A, Bellini O, Pasotti M, Repetto A, Tavazzi L, Arbustini E (2003) Loss of lamin A/C expression revealed by immuno-electron microscopy in dilated cardiomyopathy with atrioventricular block caused by LMNA gene defects. Virchows Arch 443(5):664–671PubMedGoogle Scholar
  195. 195.
    Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101(24):8963–8968PubMedCentralPubMedGoogle Scholar
  196. 196.
    Taimen P, Pfleghaar K, Shimi T, Moller D, Ben-Harush K, Erdos MR, Adam SA, Herrmann H, Medalia O, Collins FS, Goldman AE, Goldman RD (2009) A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proc Natl Acad Sci U S A 106(49):20788–20793, doi:0911895106 [pii] 10.1073/pnas.0911895106 PubMedCentralPubMedGoogle Scholar
  197. 197.
    Meaburn KJ, Cabuy E, Bonne G, Levy N, Morris GE, Novelli G, Kill IR, Bridger JM (2007) Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging Cell 6(2):139–153PubMedGoogle Scholar
  198. 198.
    Mewborn SK, Puckelwartz MJ, Abuisneineh F, Fahrenbach JP, Zhang Y, MacLeod H, Dellefave L, Pytel P, Selig S, Labno CM, Reddy K, Singh H, McNally E (2010) Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS One 5(12):e14342. doi: 10.1371/journal.pone.0014342 PubMedCentralPubMedGoogle Scholar
  199. 199.
    Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103(23):8703–8708PubMedCentralPubMedGoogle Scholar
  200. 200.
    Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063PubMedCentralPubMedGoogle Scholar
  201. 201.
    Lattanzi G, Columbaro M, Mattioli E, Cenni V, Camozzi D, Wehnert M, Santi S, Riccio M, Del Coco R, Maraldi NM, Squarzoni S, Foisner R, Capanni C (2007) Pre-Lamin A processing is linked to heterochromatin organization. J Cell Biochem 102(5):1149–1159PubMedGoogle Scholar
  202. 202.
    Columbaro M, Capanni C, Mattioli E, Novelli G, Parnaik VK, Squarzoni S, Maraldi NM, Lattanzi G (2005) Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment. Cell Mol Life Sci 62(22):2669–2678PubMedCentralPubMedGoogle Scholar
  203. 203.
    Capo-chichi CD, Cai KQ, Smedberg J, Ganjei-Azar P, Godwin AK, Xu XX (2011) Loss of A-type lamin expression compromises nuclear envelope integrity in breast cancer. Chin J Cancer 30(6):415–425PubMedCentralPubMedGoogle Scholar
  204. 204.
    Willis ND, Cox TR, Rahman-Casans SF, Smits K, Przyborski SA, van den Brandt P, van Engeland M, Weijenberg M, Wilson RG, de Bruine A, Hutchison CJ (2008) Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 3(8):e2988. doi: 10.1371/journal.pone.0002988 PubMedCentralPubMedGoogle Scholar
  205. 205.
    Skvortsov S, Schafer G, Stasyk T, Fuchsberger C, Bonn GK, Bartsch G, Klocker H, Huber LA (2011) Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J Proteome Res 10(1):259–268. doi: 10.1021/pr100921j PubMedGoogle Scholar
  206. 206.
    Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12(3):196–209. doi: 10.1038/nrc3219 PubMedGoogle Scholar
  207. 207.
    Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11(10):726–734. doi: 10.1038/nrc3130 PubMedCentralPubMedGoogle Scholar
  208. 208.
    Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA, Van Den Berg D, Laird PW (2012) Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 44(1):40–46. doi: 10.1038/ng.969 Google Scholar
  209. 209.
    Romana SP, Radford-Weiss I, Ben Abdelali R, Schluth C, Petit A, Dastugue N, Talmant P, Bilhou-Nabera C, Mugneret F, Lafage-Pochitaloff M, Mozziconacci MJ, Andrieu J, Lai JL, Terre C, Rack K, Cornillet-Lefebvre P, Luquet I, Nadal N, Nguyen-Khac F, Perot C, Van den Akker J, Fert-Ferrer S, Cabrol C, Charrin C, Tigaud I, Poirel H, Vekemans M, Bernard OA, Berger R (2006) NUP98 rearrangements in hematopoietic malignancies: a study of the Groupe Francophone de Cytogenetique Hematologique. Leukemia 20(4):696–706. doi: 10.1038/sj.leu.2404130 PubMedGoogle Scholar
  210. 210.
    Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K, Chen SJ, Willman CL, Chen IM, Feinberg AP, Jenkins NA, Copeland NG, Shaughnessy JD Jr (1996) Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 12(2):154–158. doi: 10.1038/ng0296-154 PubMedGoogle Scholar
  211. 211.
    Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM (1999) CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 19(1):764–776PubMedCentralPubMedGoogle Scholar
  212. 212.
    Wang GG, Cai L, Pasillas MP, Kamps MP (2007) NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9(7):804–812. doi: 10.1038/ncb1608 PubMedGoogle Scholar
  213. 213.
    Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H, Luo JL, Patel DJ, Allis CD (2009) Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459(7248):847–851. doi: 10.1038/nature08036 PubMedCentralPubMedGoogle Scholar
  214. 214.
    Wang GG, Allis CD (2009) “Misinterpretation” of a histone mark is linked to aberrant stem cells and cancer development. Cell Cycle 8(13):1982–1983PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.The Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
  2. 2.Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK

Personalised recommendations