Growth Processes

  • Andreas Deutsch
  • Sabine Dormann
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In a biological context, the term “growth” is used to indicate both increase in size, i.e., volume increase of an individual organism or cell, and increase in numbers, in particular the number of organisms or cells. In this chapter, we focus on models of “particle populations” growing in number. Starting from a short overview of historic growth concepts, we provide examples of probabilistic cellular automaton and lattice-gas cellular automaton growth models.


  1. Adam, J. A., and N. Bellomo, eds. 1996. A Survey of Models for Tumor Immune System Dynamics. Boston: Birkhäuser.Google Scholar
  2. Banks, R. B. 1994. Growth and Diffusion Phenomena: Mathematical Frameworks and Applications. New York: Springer.CrossRefzbMATHGoogle Scholar
  3. Boccara, N., and K. Cheong. 1993. Critical behaviour of a probabilistic automata network sis model for the spread of an infectious disease in a population of moving individuals. Journal of Physics A: Mathematical and General 26: 3707–3717.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Boccara, N., and H. Fukś. 1999. Modeling diffusion of innovations with probabilistic cellular automata. In Cellular Automata: A Parallel Model, eds. M. Delorme, and J. Mazoyer. Dordrecht: Kluwer Academic Publishers.Google Scholar
  5. Boccara, N., J. Nasser, and M. Roger. 1994. Critical behavior of a probabilistic local and nonlocal site-exchange cellular automaton. International Journal of Modern Physics C 5: 537–545.CrossRefGoogle Scholar
  6. Boccara, N., O. Roblin, and M. Roger. 1994a. Automata network predator-prey model with pursuit and evasion. Physical Review E 50: 4531–4541.CrossRefGoogle Scholar
  7. Boccara, N., O. Roblin, and M. Roger. 1994b. Route to chaos for a global variable of a two-dimensional ‘game-of-life type’ automata network. Journal of Physics A: Mathematical and General 27: 8039–8047.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Casey, A. E. 1934. The experimental alteration of malignancy with a homologous mammalian tumor material: I. results with intratesticular inoculation. American Journal of Cancer Research 21: 760–775.Google Scholar
  9. Chaté, H., and P. Manneville. 1992. Collective behaviors in spatially extended systems with local interactions and synchronous updating. Progress in Theoretical Physics 87(1): 1–60.CrossRefGoogle Scholar
  10. Chen, K., P. Bak, and C. Tang. 1990. A forest-fire model and some thoughts on turbulence. Physics Letters A 147: 297–300.CrossRefGoogle Scholar
  11. Chopard, B., and M. Droz. 1998. Cellular Automata Modeling of Physical Systems. New York: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  12. de la Torre, A. C. and H. O. Mártin. 1997. A survey of cellular automata like the ‘game of life’. Physica A 240: 560–570.CrossRefGoogle Scholar
  13. Doucet, P., and P. B. Sloep. 1992. Mathematical Modeling in the Life Sciences. New York: Ellis Horwood.zbMATHGoogle Scholar
  14. Duryea, M., T. Caraco, G. Gardner, W. Maniatty, and B. K. Szymanski. 1999. Population dispersion and equilibrium infection frequency in a spatial epidemic. Physica D 132: 511–519.CrossRefzbMATHGoogle Scholar
  15. Edelstein-Keshet, L. 2004. Classics in Applied Mathematics: Mathematical Models in Biology. Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar
  16. Eden, M. 1961. Vol. 4: Contributions to biology and problems of medicine. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability held at the Statistical Laboratory, University of California, 20 June–30 July, ed. J. Neyman. Berkeley: University of California Press.Google Scholar
  17. Eloranta, K. 1997. Critical growth phenomena in cellular automata. Physica D 103: 478–484.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Fatès, N. 2010. Does life resist asynchrony? In Game of Life Cellular Automata, ed. A. Adamatzky, 257–274. London: Springer.CrossRefGoogle Scholar
  19. Fatès, N., and M. Morvan. 2004. Perturbing the topology of the game of life increases its robustness to asynchrony. In Cellular Automata: Proceedings of 6th International Conference on Cellular Automata for Research and Industry (ACRI) 2004, 111–120. Berlin: Springer.CrossRefGoogle Scholar
  20. Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London 115: 513–585.CrossRefGoogle Scholar
  21. Greenberg, J. M., B. D. Hassard, and S. P. Hastings. 1978. Pattern formation and periodic structures in systems modeled by reaction-diffusion equations. Bulletin of the American Mathematical Society 84: 1296–1327.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Hatzikirou, H., L. Brusch, and A. Deutsch. 2010. From cellular automaton rules to an effective macroscopic mean-field description. Acta Physica Polonica B Proceedings Supplement 3: 399–416.Google Scholar
  23. Hiebeler, D. 1997. Stochastic spatial models: From simulations to mean field and local structure approximations. Journal of Theoretical Biology 187: 307–319.CrossRefGoogle Scholar
  24. Hoya White, S., A. Martín del Rey, and G. Rodríguez Sánchez. 2007. Modeling epidemics using cellular automata. Applied Mathematics and Computation 186: 193–202.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Kapral, R., A. T. Lawniczak, and P. Masiar. 1991. Oscillations and waves in a reactive lattice-gas automaton. Physical Review Letters 66(19):2539–2542.CrossRefGoogle Scholar
  26. Malthus, T. R. 1798. An Essay on the Principle of Population, as it Affects the Future Improvement of Society. London: J. Johnson.Google Scholar
  27. Murray, J. D. 2002. Mathematical Biology, 3rd ed. New York: Springer.zbMATHGoogle Scholar
  28. Packard, N. H., and S. Wolfram. 1985. Two-dimensional cellular automata. Journal of Statistical Physics 38: 901–946.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Richardson, D. 1973. Random growth in a tesselation. Mathematical Proceedings of the Cambridge Philosophical Society 74: 515–528.CrossRefzbMATHGoogle Scholar
  30. Rodriguez-Brenes, I. A., N. L. Komarova, and D. Wodarz. 2013. Tumor growth dynamics: insights into evolutionary processes. Trends in Ecology and Evolution 28(10): 597–604.CrossRefGoogle Scholar
  31. Rozenfeld, A. F., and E. V. Albano. 1999. Study of a lattice-gas model for a prey-predator system. Physica A 266: 322–329.CrossRefGoogle Scholar
  32. Schönfisch, B. 1993. Zelluläre Automaten und Modelle für Epidemien. Ph.D. thesis, Fakultät für Biologie, Universität Tübingen.Google Scholar
  33. Verhulst, P.-F. 1838. Notice sur la loi que la population suit dans son accroissement. Correspondence Mathematique et Physique 10: 113–121.Google Scholar
  34. Williams, H. T., S. G. Desjardins, and F. T. Billings. 1998. Two-dimensional growth models. Physics Letters A 250: 105–110.CrossRefGoogle Scholar
  35. Witten, T. A., and L. M. Sander. 1983. Diffusion-limited aggregation. Physics Review B 27(9): 5686–5697.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andreas Deutsch
    • 1
  • Sabine Dormann
    • 2
  1. 1.Centre for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
  2. 2.FB Mathematik/InformatikUniversität OsnabrückOsnabrückGermany

Personalised recommendations