Skip to main content

Abstract

The diffusive LGCA which we encountered in ch. 5 may serve as a model for random biological motion “without interaction.” It is important to note that diffusive automata are not able to generate any patterns as we demonstrated by Fourier analysis of the dominant modes which never become unstable. However, coupling of diffusion with an appropriate “reaction” may generate patterns – we presented an example of (diffusion-limited) growth patterns generated as the result of an interplay of diffusion and “sticking” (see sec. 5.5). Historically, the discovery of diffusion-driven instabilities as a pattern forming mechanism is due to Alan Turing  (1952). To what extent Turing instabilities account for biological pattern formation is not clear but it has been shown that they might influence the development of intracellular prepatterns (Kondo and Miura 2010, Meinhardt and de Boer 2001). An example of a “Turing LGCA” is introduced in ch. 13.

The questions which we shall pursue, then, are these: “What may be the forces which unite cells into tissues,” and “By what mechanism may cells exert preferences in their associations with other cells”?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Steinberg (1958)

  2. 2.

    Indices and superscripts are taken modulo b.

  3. 3.

    That is, ω i n = −ω i 1, ω 3 1 = −ω 1 1 and ω 4 1 = ω 2 1

Bibliography

  • Adler, C., D. d’Humières, and D. H. Rothman. 1994. Surface tension and interface fluctuations in immiscible lattice gases. Journal of Physics I 4: 29–46.

    Google Scholar 

  • Alexander, F. J., I. Edrei, P. L. Garrido, and J. L. Lebowitz. 1992. Phase transitions in a probabilistic cellular automaton: growth kinetics and critical properties. Journal of Statistical Physics 68(3/4): 497–514.

    Article  MATH  Google Scholar 

  • Armstrong, P. B. 1985. The control of cell motility during embryogenesis. Cancer Metastasis Reviews 4: 59–79.

    Article  Google Scholar 

  • Boghosian, B. M., P. V. Coveney, and A. N. Emerton. 1996. A lattice-gas model of microemulsions. Proceedings of the Royal Society A: Mathematical, Physical 452: 1221–1250.

    Article  Google Scholar 

  • Bussemaker, H. J. 1996. Analysis of a pattern forming lattice-gas automaton: mean-field theory and beyond. Physical Review E 53(2): 1644–1661.

    Article  Google Scholar 

  • Drasdo, D. 1993. Monte-Carlo-Simulationen in zwei Dimensionen zur Beschreibung von Wachstumskinetik und Strukturbildungsphänomenen in Zellpopulationen. Ph.D. thesis, University, Göttingen.

    Google Scholar 

  • Edelstein, B. B. 1971. Cell specific diffusion model of morphogenesis. Journal of Theoretical Biology 30: 515–532.

    Article  Google Scholar 

  • Fischer, K. H., and J. A. Hertz. 1993. Spin Glasses. Cambridge: Cambridge University Press.

    Google Scholar 

  • Glazier, J. A., and F. Graner. 1993. Simulation of the differential adhesion driven rearrangement of biological cells. Physical Review E 47(3): 2128–2154.

    Article  Google Scholar 

  • Godt, D., and U. Tepass. 1998. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395: 387–391.

    Article  Google Scholar 

  • Holtfreter, J. 1939. Gewebaffinität, ein Mittel der embryonalen Formbildung. Archiv für Experimentelle Zellforschung 23: 169–209.

    Google Scholar 

  • Holtfreter, J. 1943. A study of the mechanics of gastrulation. The Journal of Experimental Biology 94: 261–318.

    Google Scholar 

  • Holtfreter, J. 1944. A study of the mechanics of gastrulation, part II. The Journal of Experimental Zoology 95: 171–212.

    Article  Google Scholar 

  • Huttenlocher, A., M. Lakonishok, M. Kinder, S. Wu, T. Truong, K. Knudsen, and A. Horwitz. 1998. Integrin and cadherin synergy regulates contact inhibition of migration and motile activity. The Journal of Cell Biology 141(2): 515–526.

    Article  Google Scholar 

  • Kondo, S., and T. Miura. 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329: 1616–1620.

    Article  MathSciNet  MATH  Google Scholar 

  • Krieg, M., Y. Arboleda-Estudillo, P. H. Püch, J. Käfer, F. Graner, D. J. Müller, and C. P. Heisenberg. 2008. Tensile forces govern germ-layer organization in zebrafish. Nature Cell Biology 10(4): 429–436.

    Article  Google Scholar 

  • Maini, P. K. 1999. Mathematical models in morphogenesis. In Mathematics Inspired by Biology. eds. V. Capasso and O. Dieckmann, 151–189. Berlin: Springer.

    Google Scholar 

  • Maini, P. K., K. J. Painter, and H. N. P. Chau. 1997. Spatial pattern formation in chemical and biological systems. Journal of the Chemical Society, Faraday Transactions 93(20): 3601–3610.

    Article  Google Scholar 

  • Marée, A. F. M., and P. Hogeweg. 2001. How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proceedings of the National Academy of Sciences of the United States of America 98: 3879–3883.

    Google Scholar 

  • Meinhardt, H., and P. A. J. de Boer. 2001. Pattern formation in Escherichia coli: A model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proceedings of the National Academy of Sciences of the United States of America 98(25): 14202–14207.

    Article  Google Scholar 

  • Mikhailov, A. S. 1994. Foundations of Synergetics I. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Mochizuki, A., Y. Iwasa, and Y. Takeda. 1996. A stochastic model for cell sorting and measuring cell-cell adhesion. Journal of Theoretical Biology 179: 129–146.

    Article  Google Scholar 

  • Mochizuki, A., N. Wada, H. Ide, and Y. Iwasa. 1998. Cell-cell adhesion in limb formation, estimated from photographs of cell sorting experiments based on a spatial stochastic model. Developmental Dynamics 211: 204–214.

    Article  Google Scholar 

  • Moreira, J., and A. Deutsch. 2004. Pigment pattern formation in zebrafish during late larval stages: a model based on local interactions. Developmental Dynamics 232: 33–42.

    Article  Google Scholar 

  • Moscona, A. 1961. Rotation-mediated histogenetic aggregation of dissociated cells. Experimental Cell Research 22: 455–475.

    Article  Google Scholar 

  • Moscona, A. 1962. Analysis of cell recombinations in experimental synthesis of tissues in vitro. Journal of Cellular and Comparative Physiology 60 (Suppl. 1): 65–80.

    Article  Google Scholar 

  • Murray, J. D. 2002. Mathematical Biology, 3rd ed. New York: Springer.

    MATH  Google Scholar 

  • Oakley, R. A., and K. W. Tosney. 1993. Contact-mediated mechanisms of motor axon segmentation. The Journal of Neuroscience 13(9): 3773–3792.

    Google Scholar 

  • Pfeifer, M. 1998. Developmental biology: birds of a feather flock together. Nature 395: 324–325.

    Article  Google Scholar 

  • Rothman, D. H. 1989. Negative-viscosity lattice gases. Journal of Statistical Physics 56(3/4): 517–524.

    Article  MathSciNet  Google Scholar 

  • Rothman, D. H., and S. Zaleski. 1997. Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Savill, N. J., and P. Hogeweg. 1997. Modeling morphogenesis: from single cells to crawling slugs. Journal of Theoretical Biology 184: 229–235.

    Article  Google Scholar 

  • Schaller, G., and M. Meyer-Hermann. 2004. Kinetic and dynamic Delaunay tetrahedralizations in three dimensions. Computer Physics Communications 162: 9–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Schubert, W. 1998. Molecular semiotic structures in the cellular immune system: key to dynamics and spatial patterning. In A Perspective Look at Nonlinear Physics; from Physics to Biology and Social Sciences, eds. J. Parisi, S. C. Müller, and W. Zimmermann, 197–206. Heidelberg: Springer.

    Google Scholar 

  • Schubert, W., C. L. Masters, and K. Beyreuther. 1993. APP + T-lymphocytes selectively sorted to endomysial tubes in polymyositis displace NCAM-expressing muscle fibers. European Journal of Cell Biology 62: 333–342.

    Google Scholar 

  • Starruß, J., T. Bley, L. Søgaard-Andersen, and A. Deutsch. 2007. A new mechanism for collective migration in M. xanthus. Journal of Statistical Physics 128(1–2): 269–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Steinberg, M. S. 1958. On the chemical bonds between animal cells. A mechanism for type-specific association. The American Naturalist 92(863): 65–81.

    Article  Google Scholar 

  • Steinberg, M. S. 1963. Reconstruction of tissues by dissociated cells. Science 141(3579): 401–408.

    Article  Google Scholar 

  • Steinberg, M. S. 1964. The problem of adhesive selectivity in cellular interactions, cellular membranes in development. Symposium of the Society for the Study of Development and Growth 22: 321–366.

    Google Scholar 

  • Takeichi, M. 1991. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451–1455.

    Article  Google Scholar 

  • Technau, U., and T. W. Holstein. 1992. Cell sorting during the regeneration of Hydra from reaggregated cells. Developmental Biology 151: 117–127.

    Article  Google Scholar 

  • Thompson, D. W. 1917. On Growth and Form. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Townes, P. L., and J. Holtfreter. 1955. Directed movements and selective adhesion of embryonic amphibian cells. The Journal of Experimental Zoology 128: 53–120.

    Article  Google Scholar 

  • Turing, A. 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B 237: 37–72.

    Article  MathSciNet  Google Scholar 

  • Voß-Böhme, A., and A. Deutsch. 2010. The cellular basis of cell sorting kinetics. Journal of Theoretical Biology 263(4): 419–436.

    Article  MathSciNet  Google Scholar 

  • Weliky, M., S. Minsuk, R. Keller, and G. Oster. 1991. Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension. Development 113: 1231–1244.

    Google Scholar 

  • Weliky, M., and G. Oster. 1990. The mechanical basis of cell rearrangement. I. epithelial morphogenesis during Fundulus epiboly. Development 109: 373–386.

    Google Scholar 

  • Wrighton, K. H. 2015. EMT promotes contact inhibition of locomotion. Nature Reviews Molecular Cell Biology 16: 518.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deutsch, A., Dormann, S. (2017). Adhesive Cell Interaction. In: Cellular Automaton Modeling of Biological Pattern Formation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-7980-3_7

Download citation

Publish with us

Policies and ethics