Skip to main content

Abstract

In this chapter, we introduce LGCA models of tumor growth and invasion . All these models are related to in vitro experiments with cancer cell lines. Besides the suggestion of cellular automaton models for particular aspects of cancer complexity the intention of this chapter is to show how combinations of interaction modules introduced in the previous chapters can be arranged for specific tumor-related applications. Development of further combinations with respect to other tumor-related problems as well as the mathematical analysis of the automaton models is open for future research (see also sec. 12.4 on “future research projects”).

Clinical oncologists and tumour biologists possess virtually no comprehensive model to serve as a framework for understanding, organizing and applying their data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Gatenby and Maini (2003).

  2. 2.

    Edward Abbey.

  3. 3.

    Parts of this section have been published in (Dormann and Deutsch 2002).

  4. 4.

    Mostly, \(\bar{p}_{m} +\bar{ p}_{d} +\bar{ p}_{n} \leq 1\); if this is not the case, the parameters are normalized.

  5. 5.

    The initial number of tumor cells is always 44.

Bibliography

  • Adam, J. A., and N. Bellomo, eds. 1996. A Survey of Models for Tumor Immune System Dynamics. Boston: Birkhäuser.

    Google Scholar 

  • Alarcon, T., H. Byrne, and P. K. Maini. 2003. A cellular automaton for tumour growth in inhomogeneous environment. Journal of Theoretical Biology 225(2): 257–74.

    Article  MathSciNet  Google Scholar 

  • Alfonso, J. C. L. Kohn-Luque, A., Stylianopoulos, T., Feuerhake, F., Deutsch, A., and Hatzikirou, H. 2016. Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights. Scientific Reports 6, art. no. 37283.

    Google Scholar 

  • Alfonso, J. C. L. Talkenberger, K., Seifert, M., Klink, B., Hawkins-Daarud, A., Hatzikirou, H., Swanson, K. R. and Deutsch, A. 2017. The biology and mathematical modelling of glioma invasion: a review. Journal of the Royal Society Interface, 14: 136.

    Article  Google Scholar 

  • Altrock, P. M., L. L. Liu, and F. Michor. 2015. The mathematics of cancer: integrating quantitative models. Nature Reviews Cancer 15: 730–745.

    Article  Google Scholar 

  • Anderson, A. R. A., and V. Quaranta. 2008. Integrative mathematical oncology. Nature Reviews Cancer 8: 227–234.

    Article  Google Scholar 

  • Andrecut, M. 1998. A simple three-states cellular automaton for modelling excitable media. International Journal of Modern Physics B 12(5): 601–607.

    Article  MathSciNet  Google Scholar 

  • Arends, M. J., and A. H. Wyllie. 1991. Apoptosis: mechanisms and roles in pathology. International Review of Experimental Pathology 32: 223–254.

    Article  Google Scholar 

  • Aubert, M., M. Badoual, S. Féreol, C. Christov, and B. Grammaticos. 2006. A cellular automaton model for the migration of glioma cells. Physical Biology 3(2): 93–100.

    Article  Google Scholar 

  • Batt, D. B., and T. M. Roberts. 1998. Cell density modulates protein-tyrosine phosphorylation. The Journal of Biological Chemistry 273(6): 3408–3414.

    Article  Google Scholar 

  • Böttger, K., H. Hatzikirou, A. Voß-Böhme, E. A. Cavalcanti-Adam, M. A. Herrero, and A. Deutsch. 2015. An emerging Allee effect is critical for tumor initiation and persistence. PLoS Computational Biology 11(9):e1004366.

    Article  Google Scholar 

  • Brat, D. J., A. A. Castellano-Sanchez, S. B. Hunter, M. Pecot, C. Cohen, E. H. Hammond, S. Devi, B. Kaur, and E. G. Van Meir. 2004. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Research 64(3): 920–927.

    Article  Google Scholar 

  • Byrne, H., and D. Drasdo 2009. Individual-based and continuum models of growing cell populations: a comparison. Journal of Mathematical Biology 58: 657–687.

    Article  MathSciNet  MATH  Google Scholar 

  • Byrne, H. M. 2010. Dissecting cancer through mathematics: from the cell to the animal model. Nature Reviews Cancer 10: 221–230.

    Article  Google Scholar 

  • Casciari, J. J., S. V. Sotirchos, and R. M. Sutherland. 1992. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration and extracellular pH. Journal of Cellular Physiology 151: 386–394.

    Article  Google Scholar 

  • Chaplain, M. A. J. 1996. Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Mathematical and Computer Modelling 23: 47–87.

    Article  MATH  Google Scholar 

  • Chauvière, A., L. Preziosi, and H. Byrne. 2009. A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism. Mathematical Medicine and Biology doi:10.1093/imammb/dqp021.

    MATH  Google Scholar 

  • Chicoine, M. R. and D. L. Silbergeld. 1995. The in vitro motility of human gliomas increases with increasing grade of malignancy. Cancer 75: 2904–2909.

    Article  Google Scholar 

  • Dab, D., J. Boon, and Y. X. Li. 1991. Lattice-gas for coupled reaction-diffusion equations. Physical Reviews Letters 66: 2535–2538.

    Article  Google Scholar 

  • Deisboeck, T., Y. Mansury, C. Guiot, P. G. Degiorgis, and P. P. Delsanto. 2005. Insights from a novel tumor model: indications for a quantitative link between tumor growth and invasion. Medical Hypotheses 65(4): 785–790.

    Article  Google Scholar 

  • Dorie, M., R. Kallman, and M. Coyne. 1986. Effect of cytochalasin B, nocodazole and irradiation on migration and internalization of cells and microspheres in tumor cell spheroids. Experimental Cell Research 166: 370–378.

    Article  Google Scholar 

  • Dorie, M., R. Kallman, D. Rapacchietta, D. van Antwerp, and Y. Huang. 1982. Migration and internalization of cells and polystrene microspheres in tumor cell spheroids. Experimental Cell Research 141: 201–209.

    Article  Google Scholar 

  • Dormann, S., and A. Deutsch. 2002. Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biology 2: 393–406.

    Google Scholar 

  • Drasdo, D. 2000. A Monte-Carlo approach to growing solid nonvascular tumours. In Networks in Biology and Medicine, eds. G. Beysens, and G. Forgacs, 171–185. New York: Springer.

    Google Scholar 

  • Drasdo, D. 2003. On selected individual-based approaches to the dynamics in multicellular systems. In Models of Polymer and Cell Dynamics, eds. W. Alt, M. Chaplain, M. Griebel, and J. Lenz. Basel: Birkhäuser.

    Google Scholar 

  • Eckerich, C., S. Zapf, U. Ulbricht, S. Müller, R. Fillbrandt, M. Westphal, and K. Lamszus 2005. Contactin is expressed in human astrocytic gliomas and mediates repulsive effects. Glia 53(1): 1–12.

    Article  Google Scholar 

  • Engwer, C., T. Hillen, M. Knappitsch, and C. Surulescu. 2015. Glioma follow white matter tracts: a multiscale DTI-based model. Journal of Mathematical Biology 71(3): 551–582.

    Article  MathSciNet  MATH  Google Scholar 

  • Feldkamp, M. M., P. Lala, N. Lau, L. Roncari, and A. Guha. 1999. Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 45: 1442–1453.

    Article  Google Scholar 

  • Folkman, J., and M. Hochberg. 1973. Self-regulation of growth in three dimensions. The Journal of Experimental Medicine 138: 745–753.

    Article  Google Scholar 

  • Freyer, J. P. 1988. Role of necrosis in regulating the growth saturation of multicellular spheroids. Cancer Research 48: 2432–2439.

    Google Scholar 

  • Frieboes, H. B., J. S. Lowengrub, S. Wise, X. Zheng, P. Macklin, E. L. Bearer, and V. Cristini 2007. Computer simulation of glioma growth and morphology. Neuroimage 37: 59–70.

    Article  Google Scholar 

  • Friedl, P. 2004. Prespecification and plasticity: shifting mechanisms of cell migration. Current Opinion in Cell Biology 16(1): 14–23.

    Article  Google Scholar 

  • Friedrich, J., R. Ebner, and L. A. Kunz-Schughart. 2007. Experimental anti-tumor therapy in 3-D: spheroids - old hat or new challenge? International Journal of Radiation Biology 83(11–12): 849–71.

    Article  Google Scholar 

  • Gatenby, R., and P. K. Maini. 2003. Cancer summed up. Nature 421: 321.

    Article  Google Scholar 

  • Giese, A., R. Bjerkvig, M. Berens, and M. Westphal. 2003. Cost of migration: invasion of malignant gliomas and implications for treatment. Journal of Clinical Oncology 21(8): 1624–1636.

    Article  Google Scholar 

  • Giese, A., L. Kluwe, B. Laube, and M. E. Berens. 1996. Migration of human glioma cells on myelin. Neurosurgery 38: 755–764.

    Article  Google Scholar 

  • Giese, A., M. A. Loo, D. Tran, S. W. Haskett, and B. M. E. Coons. 1996. Dichotomy of astrocytoma migration and proliferation. International Journal of Cancer 67: 275–282.

    Article  Google Scholar 

  • Godlewski, J., M. O. Nowicki, A. Bronisz, G. Nuovo, J. Palatini, M. De Lay, J. V. Brocklyn, M. C. Ostrowski, and E. A. Chiocca. 2010. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Molecular Cell 37(5): 620–632.

    Article  Google Scholar 

  • Greenspan, H. P. 1972. Models for the growth of a solid tumor by diffusion. Studies in Applied Mathematics 51: 317–340.

    Article  MATH  Google Scholar 

  • Hadeler, K., T. Hillen, and M. Lewis. 2009. Spatial Ecology. eds. S. Cantrell, C. Cosner, and S. Ruan. Mathematical Modeling with Quiescent Phases, 101–129. Boca Raton, FL: CRC Press/Chapman and Hall.

    Google Scholar 

  • Hanahan, D., and R. A. Weinberg. 2011. Hallmarks of cancer: the next generation. Cell 144(5): 646–674.

    Article  Google Scholar 

  • Hatzikirou, H., and A. Deutsch. 2009. Cellular Automata Models of Tumor Invasion. Encyclopedia of Complexity and Systems Science, ed. R. A. Meyers. Heidelberg: Springer.

    Google Scholar 

  • Hatzikirou, H., A. Deutsch, C. Schaller, M. Simon, and K. Swanson. 2005. Mathematical modelling of glioblastoma development: a review. Mathematical Models and Methods in Applied Sciences 15(11): 1779–1794.

    Article  MathSciNet  MATH  Google Scholar 

  • Hlatky, L., R. K. Sachs, and E. L. Alpen. 1988. Joint oxygen-glucose deprivation as the cause of necrosis on a tumor analog. Journal of Cellular Physiology 134: 167–178.

    Article  Google Scholar 

  • Hogea, C., C. Davatzikos, and G. Biros. 2008. An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. Journal of Mathematical Biology 56: 793–825.

    Article  MathSciNet  MATH  Google Scholar 

  • Jagiella, N., B. Müller, M. Müller, I. E. Vignon-Clementel, and D. Drasdo. 2016. Inferring growth control mechanisms in growing multi-cellular spheroids of NSCLC cells from spatial-temporal image data. PLoS Computational Biology 12(2):e1004412.

    Article  Google Scholar 

  • Kansal, A. R., S. Torquato, E. A. Chocas, and T. S. Deisboeck. 2000. Emergence of a subpopulation in a computational model of tumor growth. Journal of Theoretical Biology 207: 431–441.

    Article  Google Scholar 

  • Kansal, A. R., S. Torquato, G. R. Harsh, E. A. Chiocca, and T. S. Deisboeck. 2000. Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. Journal of Theoretical Biology 203: 367–382.

    Article  Google Scholar 

  • Khain, E. A., L. M. Sander, and A. M. Stein. 2005. A model for glioma growth. Complexity 11(22): 53–57.

    Article  MathSciNet  Google Scholar 

  • Kleihues, P., and W. K. Cavenee. 2004. World Health Organization Classification of Tumours. Pathology and Genetics. Tumours of the Nervous System. Lyon: IARC Press.

    Google Scholar 

  • Kussell, E., and S. Leibler. 2005. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309: 2075–2078.

    Article  Google Scholar 

  • Lewis, M. A. and G. Schmitz. 1996. Biological invasion of an organism with separate mobile and stationary states: modeling and analysis. Forma 11: 1–25.

    MathSciNet  MATH  Google Scholar 

  • Maher, E. A., F. B. Furnari, R. M. Bachoo, D. H. Rowitch, D. N. Louis, W. K. Cavenee, and R. A. DePinho. 2001. Malignant glioma: genetics and biology of a grave matter. Gender and Development 15: 1311–1333.

    Article  Google Scholar 

  • Martínez-González, A., G. F. Calvo, L. A. P. Romasanta, and V. M. Pérez-García. 2012. Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model and its therapeutic implications. Bulletin of Mathematical Biology 74(12): 2875–2896.

    Article  MathSciNet  MATH  Google Scholar 

  • Matsukado, Y., C. S. MacCarty, and J. W. Kemohan. 1961. The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice. Journal of Neurosurgery 18: 636–644.

    Article  Google Scholar 

  • Mikkelsen, T., R. Bjerkvig, O. D. Laerum, and M. L. Rosenblum. 1998. Brain Tumor Invasion: Biological, Clinical, and Therapeutic Considerations. New York: Wiley

    Google Scholar 

  • Moreira, J., and A. Deutsch. 2002. Cellular automaton models of tumour development – a critical review. Advances in Complex Systems 5(2): 1–21.

    MATH  Google Scholar 

  • Neildez-Nguyen, T., A. Parisot, C. Vignal, P. Rameau, D. Stockholm, J. Picot, V. Allo, C. L. Bec, C. Laplace, and A. Paldi. 2008. Epigenetic gene expression noise and phenotypic diversification of clonal cell populations. Differentiation 76: 33–40.

    Article  Google Scholar 

  • Preziosi, L. ed. 2003. Cancer Modelling and Simulation. Boca Raton, FL: Chapman Hall/CRC Press.

    MATH  Google Scholar 

  • Qi, A.-S., X. Zheng, C.-Y. Du, and B.-S. An. 1993. A cellular automaton model of cancerous growth. Journal of Theoretical Biology 161: 1–12.

    Article  Google Scholar 

  • Rovasio, R. A., A. Delouvee, K. M. Yamada, R. Timpl, and J. P. Thiery. 1983. Neural crest cell migration: requirements for exogenous fibronectin and high cell density. The Journal of Cell Biology 96: 462–473.

    Article  Google Scholar 

  • Rubenstein, B., and L. Kaufman. 2008. The role of extracellular matrix in glioma invasion: a cellular Potts model approach. Biophysical Journal 95: 5661–5680.

    Article  Google Scholar 

  • Russell, D. S., and L. J. Rubinstein. 1998. Pathology of Tumors of the Nervous System, vol. 1&2, 1372 p, 6th ed. New York: Oxford University Press.

    Google Scholar 

  • Scherer, H. J. 1938. Structural development in gliomas. American Journal of Cancer Research 31: 333–351.

    Google Scholar 

  • Scherer, H. J. 1940. The forms of growth in gliomas and their practical significance. Brain 63: 1–35.

    Article  Google Scholar 

  • Silbergeld, D. L. and M. R. Chicoine. 1997. Isolation and characterization of human malignant glioma cells from histologically normal brain. Journal of Neurosurgery 86: 525–531.

    Article  Google Scholar 

  • Stein, A. M., T. Demuth, D. Mobley, M. Berens, and L. K. Sander. 2007. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophysical Journal 92(1): 356–365.

    Article  Google Scholar 

  • Stein, A. M., M. O. Nowicki, T. Demuth, M. E. Berens, S. E. Lawler, E. A. Chiocca, and L. M. Sander. 2007. Estimating the cell density and invasive radius of 3D glioblastoma tumor spheroids grown in vitro. Applied Optics 46(22): 5110–5118.

    Article  Google Scholar 

  • Stein, A. M., D. A. Vader, T. S. Deisboeck, E. A. Chiocca, L. M. Sander, and D. A. Weitz. 2006. Directionality of glioblastoma invasion in a 3D in vitro experiment. arXiv:q-bio/0610031v1.

    Google Scholar 

  • Stockholm, D., R. Benchaouir, J. Picot, P. Rameau, T. Neildez, G. Landini, C. Laplace-Builhe, and A. Paldi 2007. The origin of phenotypic heterogeneity in a clonal cell population in vitro. PLOS One 4: 1–13.

    Google Scholar 

  • Swanson, K. R., J. D. Murray, and A. C. Ellsworth Jr. 2003. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. Journal of the Neurological Sciences 216: 1–10.

    Article  Google Scholar 

  • Tanaka, M. L., W. Debinski, and I. K. Puri. 2009. Hybrid mathematical model of glioma progression. Cell Proliferation 42(10): 637–646.

    Article  Google Scholar 

  • Tektonidis, M., H. Hatzikirou, A. Chauvière, M. Simon, K. Schaller, and A. Deutsch. 2011. Identification of intrinsic in vitro cellular mechanisms for glioma invasion. Journal of Theoretical Biology 287(0): 131–147.

    Google Scholar 

  • Walther, T., A. Grosse, K. Ostermann, A. Deutsch, T. Bley. 2004. Mathematical modeling of regulatory mechanisms in yeast colony development. Journal of Theoretical Biology 229: 327–338.

    Article  MathSciNet  Google Scholar 

  • Ward, J. P., and J. R. King. 1997. Mathematical modelling of avascular tumor growth. Mathematical Medicine and Biology 14: 39–69.

    Article  MATH  Google Scholar 

  • Werbowetski, T., R. Bjerkvig, and R. F. Del Maestro. 2004. Evidence for a secreted chemorepellent that directs glioma cell invasion. Journal of Neurobiology 60(1): 71–88.

    Article  Google Scholar 

  • Wolf, K., I. Mazo, H. Leung, K. Engelke, U. von Andrian, E. Deryugina, A. Strongin, E.-B. Bröcker, and P. Friedl. 2003. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. The Journal of Cell Biology 160(2): 267–277.

    Article  Google Scholar 

  • Zülch, K. J. 1986. Brain Tumors - Their Biology and Pathology, 704p., 3rd ed. Philadelphia: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deutsch, A., Dormann, S. (2017). Tumor Growth and Invasion. In: Cellular Automaton Modeling of Biological Pattern Formation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-7980-3_12

Download citation

Publish with us

Policies and ethics