Skip to main content

A Radial Framework for Estimating the Efficiency and Returns to Scale of a Multi-component Production System in DEA

  • Chapter
  • First Online:
Book cover Handbook of Operations Analytics Using Data Envelopment Analysis

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 239))

  • 2063 Accesses

Abstract

This chapter provides radial measurements of efficiency for the production process possessing multi-components under different production technologies. Our approach is based on the construction of various empirical production possibility sets. Then we propose a procedure that is unaffected affected by multiple optima for estimating returns to scale. The theoretical connections between the traditional black box and the proposed multi-component approach are established, which ascertains consistency in estimating the efficiency and returns to scale. Moreover, we introduce two homogeneity conditions, which clarify the difference between our approach and the existing one, and are important for evaluating performance in multi-component setting. Finally, an empirical study of the pollution treatment processes in China is presented, and compared to the results from black-box approach. Many insightful findings related to the operations of the pollution treatment processes in China are secured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for the estimation of technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.

    Article  Google Scholar 

  • Banker, R. D., Cooper, W. D., Seiford, L. M., Thrall, R. M., & Zhu, J. (2004). Returns to scale in different DEA models. European Journal of Operational Research, 154(2), 345–362.

    Article  Google Scholar 

  • Beasley, J. E. (1995). Determining teaching and research efficiencies. Journal of the Operational Society, 46(4), 441–452.

    Article  Google Scholar 

  • Castelli, L., Pesenti, R., & Ukovich, W. (2010). A classification of DEA models when the internal structure of the decision making units is considered. Annals of Operations Research, 173(1), 207–235.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  • Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009a). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196(3), 1170–1176.

    Article  Google Scholar 

  • Chen, Y., Cook, W. D., & Zhu, J. (2010). Deriving the DEA frontier for two-stage processes. European Journal of Operational Research, 202(1), 138–142.

    Article  Google Scholar 

  • Chen, Y., Liang, L., Yang, F., & Zhu, J. (2006). Evaluation of information technology investment: A data envelopment analysis approach. Computers & Operations Research, 33(5), 1368–1379.

    Article  Google Scholar 

  • Chen, Y., Liang, L., & Zhu, J. (2009b). Equivalence in two-stage DEA approaches. European Journal of Operational Research, 193(2), 600–604.

    Article  Google Scholar 

  • Cook, W. D., Hababou, M., & Tuenter, H. J. H. (2000). Multicomponent efficiency measurement and shared inputs in data envelopment analysis: An application to sales and service performance in bank branches. Journal of Productivity Analysis, 14(3), 209–224.

    Article  Google Scholar 

  • Cook, W. D., Liang, L., & Zhu, J. (2010). Measuring performance of two-stage network structures by DEA: A review and future perspective. Omega, 38(6), 423–430.

    Article  Google Scholar 

  • Cooper, W. W., Seiford, L. M., & Zhu, J. (2004). Handbook on data envelopment analysis. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Cooper, W. W., Thompson, R. G., & Thrall, R. M. (1996). Extensions and new developments in DEA. Annals of Operations Research, 66(2), 1–45.

    Article  Google Scholar 

  • Färe, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34(1), 25–49.

    Google Scholar 

  • Färe, R., Grosskopf, S., & Lovell, C. A. K. (1985). The measurement of efficiency of production. Boston: Kluwer Nijhoff.

    Book  Google Scholar 

  • Färe, R., Grosskopf, S., & Lovell, C. A. K. (1994). Production frontiers. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kao, C. (2009a). Efficiency decomposition in network data envelopment analysis: A relational model. European Journal of Operational Research, 192(3), 949–962.

    Article  Google Scholar 

  • Kao, C. (2009b). Efficiency measurement for parallel production systems. European Journal of Operational Research, 196(3), 1107–1112.

    Article  Google Scholar 

  • Kao, C., & Hwang, S.-N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185(1), 418–429.

    Article  Google Scholar 

  • Lewis, H. F., & Sexton, T. R. (2004). Network DEA: Efficiency analysis of organizations with complex internal structure. Computers & Operations Research, 31(9), 1365–1410.

    Article  Google Scholar 

  • Liang, L., Cook, W. W., & Zhu, J. (2008). DEA models for two-stage processes: Game approach and efficiency decomposition. Naval Research Logistics, 55(7), 643–653.

    Article  Google Scholar 

  • Ruggiero, J. (1998). Non-discretionary inputs in data envelopment analysis. European Journal of Operational Research, 111(3), 461–469.

    Article  Google Scholar 

  • Shephard, R. W. (1970). The theory of cost and production functions. Princeton: Princeton University Press.

    Google Scholar 

  • Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243–252.

    Article  Google Scholar 

  • Tsai, P. F., & Molinero, C. M. (2002). A variable returns to scale data envelopment analysis model for the joint determination of efficiencies with an example of the UK health service. European Journal of Operational Research, 141(1), 21–38.

    Google Scholar 

Download references

Acknowledgments

The research is supported by National Natural Science Funds of China (Nos. 71301155; 71471053) and the Fundamental Research Funds for the Central Universities (No. JZ2015HGBZ0481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Ding .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1

Before we prove theorem 1, we establish Lemma 1.

Lemma A1

Define \( {\widehat{T}}_b^{VRS},{\widehat{T}}^{VRS} \) as follows:

$$ {\widehat{T}}_b^{VRS}=\left\{\left(X,Y\right)\Big|{\displaystyle \sum_{j=1}^{n^2}{\lambda}_j}{x}_{ij}={x}_i,i=1,\dots, m,\right.\left.{\displaystyle \sum_{j=1}^{n^2}{\lambda}_j}{y}_{rj}={y}_r,r=1,\dots, s,{\displaystyle \sum_{j=1}^{n^2}{\lambda}_j}=1,{\lambda}_j\ge 0\right\} $$

and

\( {\widehat{T}}^{VRS}=\left\{\left(X,Y\right)\Big|{\displaystyle \sum_{k=1}^2{\displaystyle \sum_{j=1}^n{\lambda}_j^k{x}_{ij}^k}}={x}_i,i=1,\dots, m,{\displaystyle \sum_{k=1}^2{\displaystyle \sum_{j=1}^n{\lambda}_j^k}}{y}_{rj}^k={y}_r,r=1,\dots, s,{\displaystyle \sum_{j=1}^n{\lambda}_j^k}=1,{\lambda}_j^k\ge 0\right\} \). Then \( {\widehat{T}}_b^{VRS}={\widehat{T}}^{VRS} \).

Proof

(1) \( {\widehat{T}}_b^{VRS}\subseteq {\widehat{T}}^{VRS} \);

Let DMUj be some DMU in EDS, and (x 1j , …, x mj , y 1j , …, y rj ) be its input–output bundle. Suppose it is made of SDMU1k, and SDMU2m, where \( k,m\in \left\{1,\dots, n\right\} \). Obviously, \( \left({x}_{1j},\dots, {x}_{mj},{y}_{1j},\dots, {y}_{rj}\right)\in {\widehat{T}}_b^{VRS} \), since it can be decomposed into input–output bundle of SDMU1k, and that of SDMU2m. To put it another way, if we set a multiplier corresponding to SDMU1k and SDMU2m equal to 1 and other multipliers equal to zero, we can see that (x 1j , …, x mj , y 1j , …, y rj ) satisfies the condition to be an element of \( {\widehat{T}}^{VRS} \). Therefore \( {\widehat{T}}_b^{VRS}\subseteq {\widehat{T}}^{VRS} \) holds.

(2) \( {\widehat{T}}_b^{VRS}\supseteq {\widehat{T}}^{VRS} \);

For any \( \left(X,Y\right)\in {\widehat{T}}^{VRS} \), there exist two sets of convex multipliers (λ 11 , …, λ 1 n ) and \( \left({\lambda}_1^2,\dots, {\lambda}_n^2\right)\left({\lambda}_j^1,{\lambda}_j^2\ge 0,{\displaystyle \sum_{j=1}^n{\lambda}_j^1}=1,{\displaystyle \sum_{j=1}^n{\lambda}_j^2}=1\right) \) such that

$$ \begin{array}{l}{x}_i={\displaystyle \sum_{j=1}^n{\lambda}_j^1}{x}_{ij}^1+{\displaystyle \sum_{j=1}^n{\lambda}_j^2}{x}_{ij}^2\left(i=1,\dots, m\right),\\ {}{y}_r={\displaystyle \sum_{j=1}^n{\lambda}_j^1}{y}_{rj}^1+{\displaystyle \sum_{j=1}^n{\lambda}_j^2}{y}_{rj}^2\left(r=1,\dots, s\right).\end{array} $$
(14.19)

We need to show that there always exists a convex multiplier \( {\displaystyle {\sum}_{j=1}^{n^2}{\lambda}_j}=1,{\lambda}_j\ge 0 \), such that \( {x}_i={\displaystyle {\sum}_{j=1}^{n^2}{\lambda}_j{x}_{ij}},{y}_r={\displaystyle {\sum}_{j=1}^{n^2}{\lambda}_j{y}_{rj}} \), where (x 1j , …, x mj , y 1j , …, y rj ) is the input–output bundle of DMUj in EDS. In other words, there is a convex multiplier such that the following equations hold:

$$ \begin{array}{l}{x}_i={\displaystyle \sum_{j=1}^n{\lambda}_j}\left({x}_{i1}^1+{x}_{ij}^2\right)+{\displaystyle \sum_{j=n+1}^{2n}{\lambda}_j}\left({x}_{i2}^1+{x}_{i\left(j-n\right)}^2\right)+,\dots, +{\displaystyle \sum_{j={n}^2-n+1}^{n^2}{\lambda}_j}\left({x}_{in}^1+{x}_{i\left(j-{n}^2-n\right)}^2\right)\\ {}{y}_r={\displaystyle \sum_{j=1}^n{\lambda}_j}\left({y}_{r1}^1+{y}_{rj}^2\right)+{\displaystyle \sum_{j=n+1}^{2n}{\lambda}_j}\left({y}_{r2}^1+{y}_{r\left(j-n\right)}^2\right)+,\dots, +{\displaystyle \sum_{j={n}^2-n+1}^{n^2}{\lambda}_j}\left({y}_{rn}^1+{y}_{r\left(j-{n}^2-n\right)}^2\right)\end{array} $$
(14.20)

where (x 11j , …, x 1 mj , y 11j , …, y 1 sj ) and (x 21j , …, x 2 mj , y 21j , …, y 2 sj ), \( j=1,\dots, n \), are the respective input bundle and output bundle of SDMU1j, and SDMU2j. That is to say, \( {\displaystyle \sum_{j=1}^{n^2}{\lambda}_j}=1,{\lambda}_j\ge 0 \) must satisfy the following conditions:

$$ {\lambda}_j^1={\displaystyle \sum_{k=\left(j-1\right)n+1}^{\left(j-1\right)n+n}{\lambda}_k},\ {\lambda}_j^2={\displaystyle \sum_{k=1}^n{\lambda}_{n\left(j-1\right)+k}},\ j=1,\dots, n $$
(14.21)

To facilitate understanding, we organize the conditions as matrix products.

$$ \left[\begin{array}{l}{\lambda}_1\kern0.45em {\lambda}_{n+1}\kern0.45em \dots \kern0.45em {\lambda}_{n^2-n+1}\\ {}{\lambda}_2\kern0.45em {\lambda}_{n+2}\kern0.45em \dots \kern0.45em {\lambda}_{n^2-n}\\ {} \dots \dots \dots \kern0.45em \dots \\ {}{\lambda}_n\kern0.45em {\lambda}_{n+n}\kern0.45em \dots \kern0.45em {\lambda}_{n^2}\end{array}\right]\left[\begin{array}{l}1\\ {}1\\ {}\dots \\ {}1\end{array}\right]=\left[\begin{array}{l}{\lambda}_1^2\\ {}{\lambda}_2^2\\ {}\dots \\ {}{\lambda}_n^2\end{array}\right] $$
(14.22)
$$ {\left[\begin{array}{l}{\lambda}_1\kern0.75em {\lambda}_{n+1}\kern0.75em \dots \kern0.75em {\lambda}_{n^2-n+1}\\ {}{\lambda}_2\kern0.75em {\lambda}_{n+2}\kern0.75em \dots \kern0.75em {\lambda}_{n^2-n}\\ {} \dots \dots \kern1em \dots \kern1em \dots \\ {}{\lambda}_n\kern0.75em {\lambda}_{n+n}\kern0.75em \dots \kern0.75em {\lambda}_{n^2}\end{array}\right]}^T\left[\begin{array}{l}1\\ {}1\\ {}\dots \\ {}1\end{array}\right]=\left[\begin{array}{l}{\lambda}_1^1\\ {}{\lambda}_2^1\\ {}\dots \\ {}{\lambda}_n^1\end{array}\right] $$
(14.23)

The above illustration indicates that the row j of the matrix is summed to λ 2 j , and the column j the matrix is summed to λ 1 j . Let us now combine (14.22) and (14.23) into the following equations where A is 2n by n 2.

$$ \mathbf{A}\lambda =\left[\begin{array}{l}\overset{n}{\overbrace{11,\dots, 1}}\ \overset{n}{\overbrace{00,\dots, 0}}\ \overset{n}{\overbrace{00,\dots, 0}} \dots \overset{n}{\overbrace{00,\dots, 0}}\\ {}00,\dots, 0\ 11,\dots, 1\kern0.75em 00,\dots, 0 \dots 00,\dots, 0\\ {}\kern1.5em \dots \kern2em \dots \kern2.5em \dots \kern1.75em \dots \kern2em \dots \\ {}00,\dots, 0\ 00,\dots, 0\kern0.75em 00,\dots, 0 \dots 11,\dots, 1\\ {}10,\dots, 0\ 10,\dots, 0\kern0.5em 10,\dots, 0 \dots 10,\dots, 0\\ {}01,\dots, 0\ 01,\dots, 0\kern0.5em 01,\dots, 0\kern0.5em \dots \kern0.5em 01,\dots, 0\\ {}\kern1.25em \dots \kern2em \dots \kern2.5em \dots \kern1.75em \dots \kern2em \dots \\ {}00,\dots, 1\ 00,\dots, 1\kern0.5em 00,\dots, 1\kern0.75em \dots \kern0.5em 00,\dots, 1\end{array}\right]\left[\begin{array}{l}{\lambda}_1\\ {}{\lambda}_2\\ {}\dots \\ {}{\lambda}_{n^2}\end{array}\right]=\left[\begin{array}{l}{\lambda}_1^1\\ {}{\lambda}_2^1\\ {}\dots \\ {}{\lambda}_n^1\\ {}{\lambda}_1^2\\ {}{\lambda}_2^2\\ {}\dots \\ {}{\lambda}_n^2\end{array}\right]=\boldsymbol{\Gamma} $$
(14.24)

We are going to prove (14.24) always has a nonnegative solution \( {\lambda}_1^{*},\dots, {\lambda}_{n^2}^{*} \). Note that \( {\displaystyle \sum_{j=1}^{n^2}{\lambda}_j^{*}}=1 \) automatically holds provided \( {\displaystyle \sum_{j=1}^n{\lambda}_j^1}=1 \) and \( {\displaystyle \sum_{j=1}^n{\lambda}_j^2}=1 \). Our problem reduces to the existence of nonnegative solution to (14.24). We claim the nonnegative solution always exists, by way of contradiction. Before moving on, we reduce (14.24) to (14.25).

$$ \overline{\mathbf{A}}\lambda =\left[\begin{array}{l}\overset{n}{\overbrace{00,\dots, 0}}\ \overset{n}{\overbrace{11,\dots, 1}}\ \overset{n}{\overbrace{00,\dots, 0}} \dots \overset{n}{\overbrace{00,\dots, 0}}\\ {}00,\dots, 0\ 00,\dots, 0\kern0.5em 11,\dots, 1 \dots 00,\dots, 0\\ {}\kern1em \dots \kern2em \dots \kern2.5em \dots \kern1.75em \dots \kern2em \dots \\ {}00,\dots, 0\ 00,\dots, 0\kern0.5em 00,\dots, 0 \dots 11,\dots, 1\\ {}10,\dots, 0\ 10,\dots, 0\kern0.5em 10,\dots, 0 \dots 10,\dots, 0\\ {}01,\dots, 0\ 01,\dots, 0\kern0.5em 01,\dots, 0\kern0.5em \dots \kern0.5em 01,\dots, 0\\ {}\kern1.25em \dots \kern2em \dots \kern2.5em \dots \kern1.75em \dots \kern2em \dots \\ {}00,\dots, 1\ 00,\dots, 1\kern0.5em 00,\dots, 1\kern0.75em \dots \kern0.5em 00,\dots, 1\end{array}\right]\left[\begin{array}{l}{\lambda}_1\\ {}{\lambda}_2\\ {}\dots \\ {}{\lambda}_{n^2}\end{array}\right]=\left[\begin{array}{l}{\lambda}_2^1\\ {}{\lambda}_3^1\\ {}\dots \\ {}{\lambda}_n^1\\ {}{\lambda}_1^2\\ {}{\lambda}_2^2\\ {}\dots \\ {}{\lambda}_n^2\end{array}\right]=\overline{\boldsymbol{\Gamma}} $$
(14.25)

Note that we have eliminated the first row of A and the first element of Γ by elementary row operation. Assume, now, that \( \overline{A}\lambda =\overline{\Gamma} \) doesn’t have a nonnegative solution, i.e., \( \overline{\boldsymbol{\Gamma}} \) doesn’t belong to the conic hull constructed by the column vectors of Ā. By Farkas lemma, there exists \( \mathbf{x}\in {R}^{2n-1} \), such that

  1. (1)

    \( {\mathbf{x}}^{\mathbf{T}}\overline{\Gamma}>0 \);

  2. (2)

    \( {\mathbf{x}}^{\mathbf{T}}\overline{\mathbf{A}}(i)\le 0,\overline{\mathbf{A}}(i) \) denotes the i th column of Ā, \( i=1,\dots, {n}^2 \).

By (2), it follows that

  1. (1)

    \( \mathbf{x}(i)\le 0,\ i=n,\dots, 2n-1,\ \Big(\mathbf{x}(i) \) denotes the ith component of vector x);

  2. (2)

    For any \( k=1,\dots, n-1 \), we have \( x(k)+x(i)\le 0,\ i=n,\dots, 2n-1 \), i.e., \( x(k)\le \underset{j=n,\ldots 2n-1}{ \min }-x(j). \)

Combining the previous two conditions, we obtain

$$ \begin{array}{l}{x}^T\overline{\Gamma}={\displaystyle \sum_{k=1}^{n-1}x}(k){\lambda}_{k+1}^1+{\displaystyle \sum_{j=n}^{2n-1}x}(j){\lambda}_j^2\le \left(\underset{j=n,\dots, 2n-1}{ \min }-x(j)\right){\displaystyle \sum_{k=1}^{n-1}{\lambda}_{k+1}^1}+{\displaystyle \sum_{j=n}^{2n-1}x}(j){\lambda}_j^2\\ {}=\left(-\underset{j=n,\dots, 2n-1}{ \max }x(j)\right){\displaystyle \sum_{k=1}^{n-1}{\lambda}_{k+1}^1}+{\displaystyle \sum_{j=n}^{2n-1}x}(j){\lambda}_j^2\\ {}\le \left(-\underset{j=n,\dots, 2n-1}{ \max }x(j)\right){\displaystyle \sum_{k=1}^{n-1}{\lambda}_{k+1}^1}+\underset{j=n,\dots, 2n-1}{ \max }x(j)\\ {}=\left(\underset{j=n,\dots, 2n-1}{ \max }x(j)\right)\left(1-{\displaystyle \sum_{k=1}^{n-1}{\lambda}_{k+1}^1}\right)\le 0\end{array} $$
(14.26)

To see why the last relation holds, note that \( {\displaystyle {\sum}_{j=1}^n{\lambda}_j^1}=1 \) and \( \mathbf{x}(i)\le 0,\ i=n,\dots, 2n-1 \). So it follows that \( 1-{\displaystyle {\sum}_{k=1}^{n-1}{\lambda}_{k+1}^1}={\lambda}_1^1\ge 0 \), and \( \underset{j=n,\dots, 2n-1}{ \max }x(j)\le 0 \). Therefore, the product of the two parts is less than or equal to zero.

This contradicts \( {\mathbf{x}}^T\overline{\boldsymbol{\Gamma}}>0 \). Therefore, \( \overline{\boldsymbol{\Gamma}} \) belongs to the conic hull constructed by the column vectors of Ā, i.e., there is \( \lambda =\left({\lambda}_1,{\lambda}_2,\dots, {\lambda}_{n^2}\right)\ge 0 \) such that \( \overline{\mathbf{A}}\lambda =\overline{\boldsymbol{\Gamma}} \), which also means that \( \mathbf{A}\lambda =\boldsymbol{\Gamma} \). By our construction, we know that there exists \( \lambda =\left({\lambda}_1,{\lambda}_2,\dots, {\lambda}_{n^2}\right)\ge 0 \) such that (14.22) and (14.23) hold. In turn, this establishes that \( \left(X,Y\right)\in {\widehat{T}}_b^{VRS} \). □

Proof of Theorem 1

Let (x 1j , …, x mj , y 1j , …, y rj ) be an arbitrary point in T VRS b . We first prove that \( {T}_b^{VRS}\subseteq {T}^{VRS} \). By definition, there exists one point \( \left({\overline{x}}_{1j},\dots, {\overline{x}}_{mj},{\overline{y}}_{1j},\dots, {\overline{y}}_{rj}\right) \) in \( {\widehat{T}}_b^{VRS} \) such that \( {x}_{ij}\ge {\overline{x}}_{ij} \) and \( {y}_{rj}\le {\overline{y}}_{rj} \). In light of Lemma 1, \( \left({\overline{x}}_{1j},\dots, {\overline{x}}_{mj},{\overline{y}}_{1j},\dots, {\overline{y}}_{rj}\right) \) also belongs to \( {\widehat{T}}^{VRS} \). Therefore \( \left({x}_{1j},\dots, {x}_{mj},{y}_{1j},\dots, {y}_{rj}\right)\in {T}^{VRS} \), since there is a point in T VRS such that \( {x}_{ij}\ge {\overline{x}}_{ij} \) and \( {y}_{rj}\le {\overline{y}}_{rj} \) hold. By analogy, we can prove \( {T}_b^{VRS}\supseteq {T}^{VRS} \). Therefore, \( {T}_b^{VRS}={T}^{VRS} \) holds.

By substituting the convex condition in the definition of T VRS and T VRS b for \( {\displaystyle {\sum}_{j=1}^n{\lambda}_j^k}=t\ \left(k=1,2\right) \) and \( {\displaystyle {\sum}_{j=1}^{n^2}{\lambda}_j}=t\ \left(t\ge 0\right) \) respectively, it follows that \( {T}^{VRS}(t)={T}_b^{VRS}(t) \), since they are obtained by scaling up or down T VRS and T VRS b by the same factor t. Given the fact that \( {T}_b^{CRS}={\displaystyle \underset{t\in \left[0,\infty \right)}{\cup }{T}_b^{VRS}(t)} \), \( {T}_b^{NIRS}={\displaystyle \underset{t\in \left[0,1\right]}{\cup }{T}_b^{VRS}(t)} \), and \( {T}^{CRS}={\displaystyle \underset{t\in \left[0,\infty \right)}{\cup }{T}^{VRS}(t)},\ {T}^{NIRS}={\displaystyle \underset{t\in \left[0,1\right]}{\cup }{T}^{VRS}(t)} \), it follows \( {T}_b^{CRS}={T}^{CRS} \) and \( {T}_b^{NIRS}={T}^{NIRS} \). □

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ding, J., Feng, C., Wu, H. (2016). A Radial Framework for Estimating the Efficiency and Returns to Scale of a Multi-component Production System in DEA. In: Hwang, SN., Lee, HS., Zhu, J. (eds) Handbook of Operations Analytics Using Data Envelopment Analysis. International Series in Operations Research & Management Science, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7705-2_14

Download citation

Publish with us

Policies and ethics