Skip to main content

Effectively Unpaired Electrons for Singlet States: From Diatomics to Graphene Nanoclusters

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry IV

Abstract

Formal and computational models within the effectively unpaired electron (EUE) theory are reviewed and extended. In the first part, we analyze open-ended aspects of the existing EUE measures and find additional advantages of the Head-Gordon index (2003) over the very first (Yamaguchi et al. 1978) index. In particular, for ground states the Head-Gordon index estimates an average occupation of virtual holes and particles, which occur due to electron correlation. Additional hole-particle indices for describing EUE are proposed and analyzed. The second part of the paper is focuses on practical aspects and EUE computational schemes in small molecules (at the ab initio level) and large-scale polyaromatic and graphene-like structures (at the semi-empirical level). Here the unrestricted Hartree-Fock (UHF) schemes and their recently proposed simplistic versions turn out to be a suitable tool producing meaningful EUE characteristics for the extended π-electron systems (with number of carbon atoms ~103 and more) in a fast and simple way. We emphasize that UHF solutions should be regarded not as invalid spin-contaminated states but as precursors of the appropriate spin-projected states of the Lowdin’s extended Hartree-Fock type. The influence of the static and variable electric fields on π-electron systems is also studied. It is shown that strong perturbations drastically increase the electron unpairing in aromatic hydrocarbons, especially those with the initially stable Clar-type structure.

Dedicated to Late Prof. O.V. Shishkin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takatsuka K, Fueno T, Yamaguchi K (1978) Theor Chim Acta 48:175

    Article  CAS  Google Scholar 

  2. McWeeny R, Kutzelnigg W (1968) Int J Quant Chem 2:187

    Article  Google Scholar 

  3. Einstein A, Podolsky B, Rosen N (1935) Phys Rev 47:777

    Article  CAS  Google Scholar 

  4. Afriat A, Selleri F (1999) The Einstein, Podolsky, and Rosen paradox in atomic, nuclear, and particle physics. Plenum Press, New York; McWeeny R (2000) Adv Quant Chem 36:365

    Google Scholar 

  5. Head-Gordon M (2003) Chem Phys Lett 372:508

    Article  CAS  Google Scholar 

  6. Hachmann J, Dorando JJ, Aviles M, Chan GK-L (2007) J Chem Phys 127:134309

    Google Scholar 

  7. Yoneda K, Nakano M, Fukuda K, Champagne B (2012) J Phys Chem Lett 3:3338

    Article  CAS  Google Scholar 

  8. Mizukami W, Kurashige Y, Yanai T (2012) J Chem Theor Comp 9:401

    Article  CAS  Google Scholar 

  9. Plasser F, Pašalić H, Gerzabek MH, Libisch F, Reiter R, Burgdörfer J, Müller T, Shepard R, Lischka H (2013) Angew Chem Int Ed 52:2581

    Article  CAS  Google Scholar 

  10. Casanova D (2014) J Comput Chem 35:944

    Article  CAS  Google Scholar 

  11. Horn S, Plasser F, Müller T, Libisch F, Burgdörfer J, Lischka H (2014) Theor Chem Acc 133:1511

    Article  CAS  Google Scholar 

  12. Luzanov AV (2014) J Struct Chem 55:799

    Article  CAS  Google Scholar 

  13. Luzanov AV (2014) Funct Mater 21:437 [http://www.isc.kharkov.com/journal/contents/21-4/fm214-12.pdf]

  14. Barnard AS, Snook IK (2011) Modelling Simul Mater Sci Eng 19:054001; Shi H, Barnard AS, Snook IK (2012) Nanotechnology 23:065707

    Google Scholar 

  15. Luzanov AV, Zhikol OA (2005) Int J Quant Chem 104:167

    Article  CAS  Google Scholar 

  16. Luzanov AV, Prezhdo OV (2006) J Chem Phys 124:224109

    Article  CAS  Google Scholar 

  17. Staroverov VN, Davidson ER (2000) Int J Quant Chem 77:316

    Article  CAS  Google Scholar 

  18. Staroverov VN, Davidson ER (2000) Chem Phys Lett 330:161

    Article  CAS  Google Scholar 

  19. Mestechkin MM (1977) Metod Matritsy Plotnosti v Teorii Molekul. Naukova Dumka, Kiev

    Google Scholar 

  20. Staroverov VN, Davidson ER (2000) J Am Chem Soc 122:7377

    Article  CAS  Google Scholar 

  21. Lain L, Torre A, Bochicchio RC, Ponec R (2002) Chem Phys Lett 346:283; Alcoba DR, Bochicchio RC, Lain L, Torre A (2006) Chem Phys Lett. 429:286; Lain L, Torre A, Alcoba DR, Bochicchio RC (2009) Chem Phys Lett 476:101

    Google Scholar 

  22. Yamaguchi K, Kawakami T, Takano Y, Kitagawa Y, Yamashita Y, Fujita H (2002) Int J Quant Chem 90:370

    Article  CAS  Google Scholar 

  23. Cheng M-J, Hu C-H (2003) Mol Phys 101(9):1319

    CAS  Google Scholar 

  24. Proynov EI (2006) J Mol Struct (Theochem) 762:159; Proynov E, Liu F, Kong J (2013) Phys Rev A 88:032510

    Google Scholar 

  25. Amos AT, Hall GG (1961) Proc Roy Soc A 263:483

    Article  Google Scholar 

  26. Stück D, Baker TA, Zimmerman P, Kurlancheek W, Head-Gordon M (2011) J Chem Phys 135:194306

    Article  CAS  Google Scholar 

  27. Luzanov AV (2013) Int J Quant Chem 113:2489

    Article  CAS  Google Scholar 

  28. Bochicchio RC, Torre A, Lain L (2003) Chem Phys Lett 380:486

    Article  CAS  Google Scholar 

  29. Head-Gordon M (2003) Chem Phys Lett 380:488

    Article  CAS  Google Scholar 

  30. Döhnert D, Koutecký J (1980) J Am Chem Soc 102:1789; Gordon MS, Schmidt MW, Chaban G M, Glaesemann KR, Stevens WJ, Gonzalez C (1999) J Chem Phys 110:4199

    Google Scholar 

  31. Luzanov AV (2004) Kharkov University Bulletin. Chemical Series Issue 11(34):195 [http://chembull.univer.kharkov.ua/archiv/2004/12.pdf]

  32. Luzanov AV, Umanski VE (1977) Theor Experim Chem 13:162

    Article  Google Scholar 

  33. Luzanov AV, Pedash YF, Mohamad S (1990) Theor Experim Chem 26:513

    CAS  Google Scholar 

  34. Grobe R, Rzazewski K, Eberly JH (1994) J Phys B 27:L503

    Article  CAS  Google Scholar 

  35. Luzanov AV, Prezhdo OV (2007) Mol Phys 105:2879

    Article  CAS  Google Scholar 

  36. Bell RJ, Dean P, Hibbins-Butler DC (1970) J Phys C 32:111

    Google Scholar 

  37. Zyczkowski K (1999) Phys Rev A 60:3496

    Article  CAS  Google Scholar 

  38. Luzanov AV (1989) Theor Experim Chem 25:19; Luzanov AV, Wulfov AL, Krouglov VO (1992) Chem Phys Lett 197:614

    Google Scholar 

  39. Helgaker T, Jørgensen P, Olsen P (2000) Molecular Electronic-Structure Theory. Wiley, New York

    Book  Google Scholar 

  40. Purvis GD, Sheppard R, Brown BR, Bartlett RJ (1983) Int J Quant Chem 23:835

    Article  CAS  Google Scholar 

  41. Kutzelnigg W, Smith VH (1968) Int J Quant Chem 2(531):553

    Google Scholar 

  42. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  43. Nesbet RK (1958) Phys Rev 109:1632

    Article  CAS  Google Scholar 

  44. Kumar K (1962) Perturbation theory and the nuclear many body problem. North-Holland, Amsterdam

    Google Scholar 

  45. Luzanov AV (1977) Theor Math Phys 30:232

    Article  Google Scholar 

  46. Luzanov AV (2008) Int J Quant Chem 108:671

    Article  CAS  Google Scholar 

  47. Luzanov AV, Prezhdo OV (2006) J Chem Phys 125:154106

    Article  CAS  Google Scholar 

  48. Dirac PAM (1931) Cambr Phil Soc 27:240

    Article  CAS  Google Scholar 

  49. Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic, New York

    Google Scholar 

  50. Juhasz T, Mazziotti DA (2006) J. Chem. Phys. 125:174105

    Article  CAS  Google Scholar 

  51. Mazziotti DA (ed) (2007) Advances in Chemical Physics, vol 134. Wiley, New York

    Google Scholar 

  52. Luzanov AV, Prezhdo OV (2005) Int J Quantum Chem 102:582

    Article  CAS  Google Scholar 

  53. Roby KR (1974) Mol Phys 27:81

    Article  CAS  Google Scholar 

  54. Clark AE, Davidson ER (2003) Int J Quantum Chem 93:384

    Article  CAS  Google Scholar 

  55. Penney WG (1937) Proc Roy Soc A 158:306

    Article  CAS  Google Scholar 

  56. Raos G, Gerratt J, Cooper DL, Raimondi M (1994) Chem Phys 186:233; Clark AE, Davidson ER (2001) J Chem Phys 115:7382; (2002) Mol Phys 100:373; (2002) J Phys Chem A 106:7456

    Google Scholar 

  57. Herrmann C, Reiher M (2006) J Comput Chem 27:1223; Podewitz M, Reiher M (2010) Adv Inorg Chem 62:177

    Google Scholar 

  58. Alcoba DR, Torre A, Lain L, Bochicchio RC (2011) J Chem Theory Comput 7:3560

    Article  CAS  Google Scholar 

  59. Luzanov AV (2012) Int J Quantum Chem 112:2915

    Article  CAS  Google Scholar 

  60. Ramos-Cordoba E, Matito E, Mayer I, Salvador P (2012) Phys Chem Chem Phys 14:15291

    Article  CAS  Google Scholar 

  61. Matsika S, Feng X, Luzanov AV, Krylov AI (2014) J Phys Chem A 118:11943

    Article  CAS  Google Scholar 

  62. Luzanov AV, Prezhdo OV (2011) J Chem Phys 135:094107

    Article  CAS  Google Scholar 

  63. Cížek J, Paldus J (1967) J Chem Phys 47:3976

    Article  Google Scholar 

  64. Kutzelnigg W, Smith VH (1964) J Chem Phys 41:896

    Article  CAS  Google Scholar 

  65. Paldus J, Cížek J, Keating BA (1973) Phys Rev A 8:640

    Article  CAS  Google Scholar 

  66. Mayer I (1980) Adv Quantum Chem 12:189

    Article  CAS  Google Scholar 

  67. Klimo V, Tino J (1980) Mol Phys 43:477; Henderson TM, Tsuchimochi T, Scuseria GE (2012) J Chem Phys 136:164109; Luzanov

    Google Scholar 

  68. Hartmann H (1947) Z Naturforsch A 2:259

    Google Scholar 

  69. Ovchinnikov AA, Ukrainskii II, Kvenzel’ GF (1973) Sov Phys Uspekhi 15:575

    Google Scholar 

  70. Misurkin IA, Ovchinnikov AA (1974) Mol Phys 27:237; Misurkin IA, Ovchinnikov AA (1977) Russ Chem Rev 46:96

    Google Scholar 

  71. Macêdo AMS, dos Santos MC, Coutinho-Filho MD, Macedo CA (1995) Phys Rev Lett 74:1851

    Article  Google Scholar 

  72. Fujita M, Wakabayashi K, Nakada K, Kushakabe K (1996) J Phys Soc Jap 65:1920

    Article  CAS  Google Scholar 

  73. Jiang D-E, Chen X-Q, Luo W, Shelton WA (2009) Chem Phys Lett 483:120; Jiang DE, Sumpter BG, Dai SJ (2007) Chem Phys 126:134701; Das M (2014) J Chem Phys 140:124317

    Google Scholar 

  74. Jiang DE, Chen Z (eds) (2013) Graphene chemistry: theoretical perspectives. Wiley, Puerto Rico

    Google Scholar 

  75. Jiménez-Hoyos CA, Rodríguez-Guzmán R, Scuseria GE (2014) J Phys Chem A 118:9925

    Article  CAS  Google Scholar 

  76. Luzanov AV, Zhikol OA (2012) In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry I: an overview of the last two decades and current trends. Springer, Heidelberg, p 415

    Google Scholar 

  77. Minami T, Iton S, Nakano M (2013) J Phys Chem Lett 4:2133

    Article  CAS  Google Scholar 

  78. Feng X, Luzanov AV, Krylov AI (2013) J Phys Chem Lett 4:3845

    Article  CAS  Google Scholar 

  79. McWeeny R (1968) In: Reports on the Density Matrix Seminar. Queen’s University. Ontario; p 25; Dacre PD, Watts CJ, Williams GRJ, McWeeny R (1975) Mol Phys 30:1203

    Google Scholar 

  80. Luzanov AV (1975) Theor Experim Chem 9:567

    Article  Google Scholar 

  81. Ipatov A, Cordova F, Doriol LJ, Casida ME (2009) J Mol Struct (Theochem) 914:60

    Article  CAS  Google Scholar 

  82. Luzanov AV, Zhikol OA (2010) Int J Quant Chem 110:902

    CAS  Google Scholar 

  83. Murrell JN, McEwen KL (1956) J Chem Phys 25:1143

    Article  CAS  Google Scholar 

  84. Luzanov AV, Sukhorukov AA, Umanski VE (1976) Theor Experim Chem 10:354

    Article  Google Scholar 

  85. Krylov AI, Sherrill CD, Head-Gordon M (2000) J Chem Phys 113:6509

    Article  CAS  Google Scholar 

  86. Bendikov M, Duong H M, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416; Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347; Pisani L, Chan JA, Montanari B, Harrison NM (2007) Phys Rev B 75:064418; Hod O, Barone V, Scuseria GE (2008) Phys Rev B 77:035411

    Google Scholar 

  87. San-Fabian E, Moscardy F (2013) Int J Quantum Chem 113:815

    Article  CAS  Google Scholar 

  88. Torres A, Guadarrama P, Fomine S (2014) J Mol Modeling 20:1

    Article  Google Scholar 

  89. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, MillamJM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision A.01. Gaussian, Inc., Wallingford

    Google Scholar 

  90. Gebhard F (1997) The Mott metal insulator transition: models and methods. Springer, Berlin; Yazyev OV (2013) Acc Chem Res 46:2319

    Google Scholar 

  91. SmeyersYG, Doreste-Suarez L (1973) Int. J. Quantum Chem 7:687

    Google Scholar 

  92. Murphy NC, Wortis R, Atkinson WA (2011) Phys Rev B 83:184206

    Article  CAS  Google Scholar 

  93. Tyutyulkov N, Dietz F, Müllen K, Baumgarten M (1992) Chem Phys 163:55

    Article  CAS  Google Scholar 

  94. McLachlan AD (1961) Mol Phys 4:49

    Article  CAS  Google Scholar 

  95. Vonsovskii SV, Svirskii MS (1970) JETP 30:140; Vonsovskii SV (1974) Magnetism. vol 2. Wiley, New York

    Google Scholar 

  96. Majlis N (2000) The quantum theory of magnetism. World Scientific, Singapore

    Book  Google Scholar 

  97. Luo Z, Kim S, Kawamoto N, Rappe AM, Johnson AT (2011) ACS Nano 5:9154

    Article  CAS  Google Scholar 

  98. Girão EC, Cruz-Silva E, Liang L, Filho AGS, Meunier V (2012) Phys Rev B 85:235431

    Article  CAS  Google Scholar 

  99. Fujihara M, Miyata Y, Kitaura R, Nishimura Y, Camacho C, Irle S, Iizumi Y, Okazaki T, Shinohara H (2012) J Phys Chem C 116:15141

    Article  CAS  Google Scholar 

  100. Zhang X, Xin J, Ding F (2013) Nanoscale 5:2556

    Article  CAS  Google Scholar 

  101. Lieb EH, Mattis DC (1962) J Math Phys 3:749; Langer WD, Mattis DC (1971) Phys Lett 36A:139; Lieb EH (1989) Phys Rev Lett 62:1201

    Google Scholar 

  102. Coulson CA, Rushbrooke GS (1940) Proc Cambridge Phil Soc 36:139; Brickstock A, Pople JA (1954) Trans Farad Soc 59:901

    Google Scholar 

  103. Kasteleyn P (1967) In: Harary F (ed) Graph theory and theoretical physics. Academic Press, London, p 43

    Google Scholar 

  104. Harary F (1972) Graph theory. Addison-Wesley, London; Cvetkovic´ DM, Doob M, Sachs H (1980) Spectra of graphs, theory and application. Academic Press, New York

    Google Scholar 

  105. Hall GG (1955) Proc Roy Soc A 229:251

    Article  CAS  Google Scholar 

  106. Boykin TB (2009) J Comput Electron 8:142; Goringe CM, Bowler DR (1997) Hernández E Rep Prog Phys 60:1447

    Google Scholar 

  107. Mariscal M.M, Oviedo OA, Leiva EPM (eds) (2011) Metal clusters and nanoalloys: from modeling to applications. Springer, Berlin

    Google Scholar 

  108. Ivanov VV, Kisil IP, Luzanov AV (1996) J Struct Chem 37:537

    Article  Google Scholar 

  109. Chien JCW (1984) Polyacetylene: chemistry, physics and materials science. Academic Press, New York

    Google Scholar 

  110. Lennard-Jones JE (1937) Proc Roy Soc A 158:280

    Article  CAS  Google Scholar 

  111. Coulson CA (1948) Proc Phys Soc A 60:257

    Article  CAS  Google Scholar 

  112. Luzanov AV (2002) J Struct Chem 43:711

    Article  CAS  Google Scholar 

  113. Petersen R, Pedersen TG, Jauho A-P (2011) ACS Nano 5:523

    Article  CAS  Google Scholar 

  114. Foa Torres LEF, Roche S, Charlie J-C (2014) Introduction to graphene-based nanomaterials: from electronic structure to quantum transport. Cambridge Uiversity Press, Cambridge

    Google Scholar 

  115. Wolf EL (2014) Graphene: a new paradigm in condensed matter and device physics. Oxford University Press, Oxford

    Google Scholar 

  116. Cresti A, Nemec N, Biel B, Nieble G, Triozon F, Cuniberti G, Roche S (2008) Nano Research 1:361

    Article  CAS  Google Scholar 

  117. Wei D, Wang F (2012) Surf Sci 606:485

    Article  CAS  Google Scholar 

  118. Baldoni M, Sgamellotti A, Mercuri F (2008) Chem Phys Lett 464:202; Selli D, Mercuri F (2014) Carbon 75:190; Baldoni M, Mercuri F (2015) Phys Chem Chem Phys 17:2088

    Google Scholar 

  119. Sharma R, Nair N, Strano MS (2009) J Phys Chem C 113:14771

    Article  CAS  Google Scholar 

  120. Dinadayalane TC, Leszczynski J (2010) Struct Chem 21:1155

    Article  CAS  Google Scholar 

  121. Wassmann T, Seitsonen AP, Saitta AM, Lazzeri M, Mauri F (2010) J Am Chem Soc 132:3440

    Article  CAS  Google Scholar 

  122. Radovic R, Silva-Villalobos AF, Silva-Tapia AB, Vallejos-Burgos F (2011) Carbon 49:3471

    Article  CAS  Google Scholar 

  123. Hoffmann R (1963) J Chem Phys 39:1397; Lowe JP (1978) Quantum chemistry. Academic, New York

    Google Scholar 

  124. Luzanov AV (2013) J Struct Chem 54:835

    Article  CAS  Google Scholar 

  125. Luzanov AV (2013) Kharkov University Bulletin. Chemical Series Issue 22(45):9

    Google Scholar 

  126. Clar E, Zander M. (1958) J Chem Soc 1861; Clar E (1972) Aromatic sextet. Wiley, London

    Google Scholar 

  127. Luzanov AV (2013) J Struct Chem 54:277

    Article  CAS  Google Scholar 

  128. Tyutyulkov N, Drebov N, Mu1llen K, Staykov A, Dietz F (2008) J Phys Chem C 112: 6232

    Google Scholar 

  129. Machado FBC, Aquino AJA, Lischka H (2014) ChemPhysChem 15:3334

    Article  CAS  Google Scholar 

  130. Sheka EF (2012) Int J Quantum Chem 112:3076; Sheka EF (2015) Adv Quantum Chem 70:111

    Google Scholar 

  131. Cui Z-h, Lischka H, Mueller T, Plasser F, Kertesz M (2014) ChemPhysChem 15:165; Cui ZH, Lischka H, Beneberu, HZ, Kertesz M (2014) J Am Chem Soc 136:12958

    Google Scholar 

  132. Mardsen JE, Ratiu T, Abraham R (2001) Manifolds, tensor analysis, and applications. Springer, New York

    Google Scholar 

  133. Mestechkin MM (1969) Theor Math Phys 1:221

    Article  Google Scholar 

  134. Ruskai MB (1970) J Math Phys 11:3218

    Article  Google Scholar 

  135. Valdemoro C (1992) Phys Rev A 45:4462

    Article  Google Scholar 

  136. Dirac PAM (1934) Proc Cambr Phil Soc 30:150

    Article  CAS  Google Scholar 

  137. Davydov AS (1965) Quantum mechanics. Pergamon Press, Oxford [see Eqs. (61.12) and (61.29)]

    Google Scholar 

  138. Rebane TK (1963) Vestn Leningr Gos Univ 22:30; Mestechkin MM (1965) Theor Experim Chem 1:388

    Google Scholar 

  139. Li W, Chen F (2014) J Nanopart Res 16:2498

    Article  CAS  Google Scholar 

  140. Löwdin P-O (1955) Phys Rev 97:1505

    Google Scholar 

  141. Fischer SA, Prezhdo OV (2011) J Phys Chem C 115:10006; Jaeger HM, Hyeon-Deuk K, Prezhdo OV (2012) Acc Chem Res 46:1280

    Google Scholar 

Download references

Acknowledgment

Many people influenced the author’s work directly or indirectly, and most valuable were nice contacts with colleagues and coauthors Art Bochevarov, David Casanova, Anna Krylov, Hans Lischka, Felix Plasser, and Oleg Zhikol. The receipt of the ab initio π-NOON spectra for the (5a, 4z), (5a, 5z), and (5a, 6z) periacenes from H. Lischka and F. Plasser is also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoliy V. Luzanov .

Editor information

Editors and Affiliations

Appendices

Appendix A: Duality Symmetry and Generalized EUE Indices

In this Appendix we clarify the cause for postulating symmetry relation (6.18). For this aim we introduce a formal operation which can be named the duality transformation and which is well known in multilinear algebra as the Hodge star operation, or Hodge dual [132]. In the RDM theory an equivalent transformation was applied in [19, 133], without recognizing it as a Hodge dual. The following simple example helps to explain this notion in the more familiar terms of many-electron state vectors.

We consider a two-electron problem in the basis of five spin-orbitals

$$ \left\{ {\left| {\chi_{1} } \right\rangle ,\left| {\chi_{2} } \right\rangle ,\left| {\chi_{3} } \right\rangle \left| {\chi_{4} } \right\rangle ,\left| {\chi_{5} } \right\rangle } \right\}. $$
(A1)

Let the ket

$$ \left| {\Psi _{{^{ [ 2 ]} }} } \right\rangle = \left| {\chi_{1} \chi_{2} } \right\rangle $$
(A2)

be the two-electron Slater determinant built from \( \left| {\chi_{1} } \right\rangle \) and \( \left| {\chi_{2} } \right\rangle \). By definition, the dual ket, \( \left| {\Psi _{[3]}^{ *} } \right\rangle \), is built up from the rest spin-orbitals, giving the three-electron determinant:

$$ \left| {\Psi _{[3]}^{ *} } \right\rangle = \left| {\chi_{3} \chi_{4} \chi_{5} } \right\rangle . $$
(A3)

In the same basis (A1), the maximal Slater determinant \( \left| {\Psi _{ \hbox{max} } } \right\rangle \) is

$$ \left| {\Psi _{ \hbox{max} } } \right\rangle = \left| {\chi_{1} \chi_{2} \chi_{3} \chi_{4} \chi_{5} } \right\rangle . $$
(A4)

It is not difficult understand that we can produce \( \left| {\Psi _{[3]}^{ *} } \right\rangle \) from \( \left| {\Psi _{ \hbox{max} } } \right\rangle \) by annihilating in Eq. (A4) the state vector (A2). More exactly, apart from a prefactor we have

$$ \left| {\Psi _{[3]}^{ *} } \right\rangle = \left\langle {{\Psi _{{^{ [ 2 ]} }} }} \mathrel{\left | {\vphantom {{\Psi _{{^{ [ 2 ]} }} } {\Psi _{ \hbox{max} } }}} \right. \kern-0pt} {{\Psi _{ \hbox{max} } }} \right\rangle . $$
(A5)

They say that the obtained three electron state \( \left| {\Psi _{[3]}^{ *} } \right\rangle \) is the Hodge dual of the two-electron state \( \left| {\Psi _{{^{ [ 2 ]} }} } \right\rangle \).

Now consider the respective 1-RDMs. In notation of Sect. 6.6, we have from determinants (A2) and (A3) the usual \( D_{1}^{\text{so}} \) matrices in the form of projectors on occupied spin-orbitals of the respective determinants:

$$ D_{1}^{\text{so}} (\left| {\Psi _{{^{ [ 2 ]} }} } \right\rangle ) = \left| {\chi_{1} } \right\rangle \left\langle {\chi_{1} } \right| + \left| {\chi_{2} } \right\rangle \left\langle {\chi_{2} } \right|, $$
$$ D_{1}^{\text{so}} (\Psi _{[3]}^{ *} ) = \left| {\chi_{3} } \right\rangle \left\langle {\chi_{3} } \right| + \left| {\chi_{4} } \right\rangle \left\langle {\chi_{4} } \right| + \left| {\chi_{5} } \right\rangle \left\langle {\chi_{5} } \right|. $$

We see that

$$ D_{1}^{\text{so}} (\Psi _{[3]}^{ *} ) = I - D_{1}^{\text{so}} (\Psi ^{ [ 2 ]} ) $$
(A6)

where unity operator I is a projector on all five spin-orbitals from Eq. (A1).

This line of reasoning can be directly extended to a general case including exact state vectors as well. It the general case we start with a r-dimensional spin-orbital basis \( \{ \left| {\chi_{k} } \right\rangle \}_{1 \le k \le r} \) and build the respective maximal determinant \( \left| {\Psi _{ \hbox{max} } } \right\rangle = \left| {\chi_{1} \ldots \chi_{r} } \right\rangle \) (clearly, the only r-electron state vector is \( \left| {\Psi _{ \hbox{max} } } \right\rangle \equiv \left| {\Psi _{ [r ]} } \right\rangle \, \)). The given exact (or approximate) state-vector \( \Psi _{ [N ]} \) produces the Hodge dual, as previously:

$$ \left| {\Psi _{ [r - N ]}^{ *} } \right\rangle = \left\langle {{\Psi _{ [N ]} }} \mathrel{\left | {\vphantom {{\Psi _{ [N ]} } {\Psi _{ \hbox{max} } }}} \right. \kern-0pt} {{\Psi _{ \hbox{max} } }} \right\rangle . $$
(A7)

Accordingly, relation (A6) is generalized to be

$$ D_{1}^{\text{so}} (\Psi _{ [r - N ]}^{ *} ) = I - D_{1}^{\text{so}} (\Psi _{ [N ]} ). $$
(A8)

This is the duality transformation in terms of 1-RDM. The analogous relation for \( D_{2}^{\text{so}} (\Psi _{ [r - N ]}^{ *} ) \) is somewhat more involved [133, 134]. The remarkable property of the Hodge duality transformation is its ability to preserve correlation operator \( \varDelta_{2}^{\text{so}} \) in Eq. (6.45), as it is first shown in [19]. The related expression is given in [135]. Thus, the other correlation matrices, e.g., \( D^{\text{eff}} \), must be the same as well. It is worth mentioning in passing that in [128] and many subsequent papers, a somewhat inconvenient terminology is used for RDMs \( D_{{}}^{\text{so}} (\Psi _{ [r - N ]}^{ *} ) \)—the latter are loosely identified with hole RDMs. Certainly, it leads to confusion and even misinterpretation, since generally such RDMs have no relation to the genuine, ‘physical’, hole RDMs discussed in Sect. 6.4 and in [16]. We prefer to refer to them as the dual RDMs [16].

We now have to sum over spin indices, making spin trace in Eq. (A8). As a result, the dual charge density matrix is yielded, viz.

$$ D(\Psi _{ [r - N ]}^{ *} ) = 2 - D(\Psi _{ [N ]} ). $$
(A9)

Then the NOON spectrum of the dual charge density matrix is simply a set \( \{ 2 - \lambda_{k} \} \) where we imply that the initial NOON spectrum is the set \( \{ \lambda_{k} \} \). Recalling that EUE characteristics of the dual state (A7) should be the same as in the initial state \( \Psi _{ [N ]} \), the identity

$$ D^{\text{eff}} (\Psi _{ [N ]} ) = D^{\text{eff}} (\Psi _{ [r - N ]}^{ *} ) $$
(A10)

is necessitated. Taking into account Eqs. (6.1), (6.5) and (6.5′) we arrive at the relation

$$ \sum\limits_{k} {\,f(\lambda_{k} )\left| {\varphi_{k} } \right\rangle \left\langle {\varphi_{k} } \right|} = \sum\limits_{k} {\,f(2 - \lambda_{k} )\left| {\varphi_{k} } \right\rangle \left\langle {\varphi_{k} } \right|} , $$
(A11)

from whence Eq. (6.18) immediately follows, that is

$$ f(\lambda ) = f(2 - \lambda ). $$
(A12)

The requirement (A12) allows us to specify a general dependence \( \lambda_{{}}^{\text{eff}} = f(\lambda_{{}} ) \), namely, \( \lambda_{{}}^{\text{eff}} \) is a nonnegative definite function of argument \( |\lambda - 1| \), with boundary values \( f(0) = f(2) = 0. \) Eqs. (6.7′) and (6.14) are evidently of this type. Rather general types of the functions can be proposed as ‘q-extensions’ of Eqs. (6.9) and (6.15). These are

$$ N_{\text{odd}}^{{}} \,[q] = \sum\limits_{k} {\,(1 - |\lambda_{k} - 1|^{2} )^{q} } , $$
(A13)
$$ N_{{{\text{eff}}\,}}^{{}} \,[q] = \sum\limits_{k} {\,(1 - |\lambda_{k} - 1|)^{q} } , $$
(A14)

where \( q \ge 1 \). We see that \( N_{\text{odd}}^{{}} \,[1] \) and \( N_{{{\text{eff}}\,}}^{{}} \,[1] \) produce the usual \( N_{\text{odd}}^{{}} \) and \( N_{\text{eff}}^{{}} \) measures, respectively. The choice \( q = 2 \) in Eq. (A13) leads to

$$ N_{\text{odd}} [2] = \sum\limits_{k} {\,[1 - (\lambda_{k} - 1)^{2} )]} , $$
(A15)

which is the modified Head-Gordon index from [5]. This expression is trivially equivalent to Eq. (6.94).

Appendix B: Density Matrix and NOON for QCTB

We consider here in more detail the QCTB model described in Sect. 6.13. Having at hand the effective Hamiltonian matrices (6.91), we straightforwardly derive projector matrices \( \rho_{\alpha } \) and \( \rho_{\beta } \) by using the well known expressions connecting Hamiltonians and respective projectors [19, 136, 137]). Let h be the Hermitian operator, such that exactly n eigenvalues of h lie below zero, and P be the projector on the corresponding eigenvectors. Then

$$ P = (I - h/|h|)/2, $$
(B1)

where \( |h| = \,\,\,[(h)^{2} ]^{1/2} \) is the modulus of operator h. Further, let one-electron Hamiltonian matrix \( h^{\delta } \) be defined as follows:

$$ h^{[\delta ]} = - \left( {\begin{array}{*{20}c} {\delta \,I} & B \\ {B^{ + } } & {\,\, - \delta \,I} \\ \end{array} } \right). $$

In particular, \( h^{\alpha } = h^{[\delta ]} \), \( h^{\beta } = h^{[ - \delta ]} \). Then, by applying Eq. (B1) to \( h = h^{[\delta ]} \), we obtain the corresponding projector

$$ P^{[\delta ]} = \frac{1}{2}\left( {\begin{array}{*{20}c} {I + \delta (\delta^{2} I + BB^{ + } )^{ - 1/2} } & {B(\delta^{2} I + B^{ + } B)^{ - 1/2} } \\ {(\delta^{2} I + B^{ + } B)^{ - 1/2} B^{ + } } & {I - \delta (\delta^{2} I + B^{ + } B)^{ - 1/2} } \\ \end{array} } \right). $$
(B2)

In derivation, the block-diagonal structure of \( (h^{[\delta ]} )^{2} \) is used, that is

$$ (h^{[\delta ]} )^{2} = \left( {\begin{array}{*{20}c} {\delta^{2} I + BB^{ + } } & 0 \\ 0 & {\delta^{2} I + B^{ + } B} \\ \end{array} } \right). $$

Equation (B2) was earlier derived by another technique for the special closed π-shells with alternating electronegativity [138]. Obviously, setting \( \delta = 0 \), we return to the Hall formula (6.90). By recalling Eq. (6.91) we have

$$ \rho_{\alpha } = P^{[\delta ]} ,\;\;\rho_{\beta } = P^{[ - \delta ]} . $$
(B3)

Putting together Eqs. (B2) and (B3), we get from Eq. (6.10) the main result:

$$ D = \left( {\begin{array}{*{20}c} I & {B(\delta^{2} I + B^{ + } B)^{ - 1/2} } \\ {(\delta^{2} I + B^{ + } B)^{ - 1/2} B^{ + } } & I \\ \end{array} } \right). $$
(B4)

The problem of diagonalizing this \( D \) is a quite elementary, and the full NOON spectrum takes the form

$$ \lambda_{i}^{{}} = 1 + \varepsilon_{i} /\sqrt {\delta^{2} + \varepsilon_{i}^{2} } ,\;\,\lambda_{a}^{{}} = 1 - \varepsilon_{a} /\sqrt {\delta^{2} + \varepsilon_{a}^{2} } , $$
(B5)

where \( 1 \le i,\,a \le n \), and nonnegative quantities \( \varepsilon_{i} \equiv \left| {\varepsilon_{i} } \right| \), as well as \( \varepsilon_{a} \equiv \left| {\varepsilon_{a} } \right| \), are eigenvalues of \( (B^{ + } B)^{1/2} \), that is \( \{ \varepsilon_{i} \} \) is the bipartite graph spectrum. From Eq. (B5) the main EUE indices within QCTB are easily deduced. For instance,

$$ N_{\text{odd}}^{{}} = 2\delta^{2} \sum\limits_{i = 1}^{n} {(\delta^{2} + \varepsilon_{i}^{2} )^{ - 1} } . $$
(B6)

Remark also an evident symmetry of the corresponding hole and particle occupancies, defined by Eq. (6.41′):

$$ \{ 1 - \varepsilon_{i} /\sqrt {\delta^{2} + \varepsilon_{i}^{2} } \}_{{}} = \{ 1 - \varepsilon_{a} /\sqrt {\delta^{2} + \varepsilon_{a}^{2} } \} . $$
(B7)

that follows from Eq. (B5). In other words, the hole and particle occupancy spectra are identical for this π-model.

As a matter of fact, the hole and particle occupancies are identical for any bipartite networks treated within π-approximation, up to FCI/PPP. This is a simple corollary of the generalized pairing theorem of McLachlan [94] stating that the π-electron charge density matrix of the alternant hydrocarbons is of the form

$$ D = \left( {\begin{array}{*{20}c} I & \partial \\ {\partial^{ + } } & I \\ \end{array} } \right), $$
(B8)

where the \( 2p_{z} \) AO basis set is ordered as in Eq. (6.89), and \( \partial \) defines the inter-sublattice bond order matrix. Clearly, the corresponding NOON spectrum \( \{ \lambda_{k} \} \) is

$$ \{ 1 + \sqrt {\mu_{i} } \} ,\,\,\{ 1 - \sqrt {\mu_{a} } \} $$
(B9)

where \( \mu_{i} \) (or \( \mu_{a} \)) are eigenvalues of \( \partial^{ + } \partial \), and \( 1 \le i,\,a \le n \). As a result, the initial π-NOON spectrum is symmetrical in respect to the point \( \lambda = 1 \). From Eq. (B9) we deduce that indeed the respective hole and particle π-occupancies, defined as in Eq. (6.41′), are identically the same:

$$ \{ 1 - \sqrt {\mu_{i} } \} = \{ 1 - \sqrt {\mu_{a} } \} . $$
(B10)

Interestingly, an initio data [9, 11] approximately follow Eqs. (B9) and (B10). Incidentally, it follows, from this discussion, that the hole occupancy distribution \( \{ 1 - \sqrt {\mu_{i} } \} \) (generally \( \{ 2 - \lambda_{i} \}_{1 \le i \le n} \)) is sufficient for considering EUE problems. For instance, instead of plotting NOON spectrum \( \{ \lambda_{k} \} \), one can plot only hole occupancy spectrum \( \{ 2 - \lambda_{i} \} \) as even more suitable in the EUE context. This occupancy spectrum is in fact the second half of the typical π-NOON spectra which were presented in Tables 6.6, 6.7, and Fig. 6.4.

Appendix C: Generalized Hole-Particle Indices

Here we analyze the main EUE indices in terms of hole-particle quantities. We begin with the representation

$$ D = 2\rho + \varDelta D, $$
(C1)

where \( \rho \) is of the form (6.36), and \( \left| {\varphi_{i} } \right\rangle \) are the natural orbitals of the state in question, so \( \varDelta D \) commutes with \( \rho \). Then, using the same notation, as in Eq. (6.41), we obtain the spectral resolution

$$ \varDelta D = - \sum\limits_{i \le n} {\varDelta_{i} \,\left| {\varphi_{i} } \right\rangle \left\langle {\varphi_{i} } \right|} + \sum\limits_{a > n} {\,\lambda_{a}^{{}} \left| {\varphi_{a} } \right\rangle \left\langle {\varphi_{a} } \right|} , $$
(C2)

where

$$ \varDelta_{i} \equiv 2 - \lambda_{i} $$
(C3)

are new nonnegative quantities (\( 0 \le \varDelta_{i} < 1 \), and \( i \le n \)), and \( \lambda_{a}^{{}} \) are related to ‘virtual’ natural orbitals. We see that correlation correction matrix \( \varDelta D \) has a clear hole-particle structure: \( \varDelta_{i} \, \) are the occupancy numbers for the holes, and \( \lambda_{a}^{{}} \) are the same for the particles. In manipulations the identity

$$ \sum\nolimits_{i} {\varDelta_{i} } = \sum\nolimits_{a} {\lambda_{a} } $$
(C4)

will be useful as well. It follows from Eqs. (C1), (C2), and normalization (6.2).

Due to the diagonal form (C2) we trivially have the diagonal form of the matrix \( |\varDelta D|\, \) defined by Eq. (6.96):

$$ |\varDelta D|\, = \sum\nolimits_{i} {\,\varDelta_{i} \,\,} \,\left| {\varphi_{i} } \right\rangle \left\langle {\varphi_{i} } \right|\, + \sum\nolimits_{a} {\,\,} \lambda_{a}^{{}} \left| {\varphi_{a} } \right\rangle \left\langle {\varphi_{a} } \right| . $$
(C5)

But this is the same as the hole-particle density in Eq. (6.41), that is

$$ D^{\text{h - p}} = |\varDelta D|. $$
(C6)

It is essential that under duality transformation (A9) the holes and particles in Eq. (C2) change place, so identity (A10) satisfies automatically for \( D^{\text{eff}} = D^{\text{h - p}} \).

The appropriate q-extended (\( q \ge 1 \)) hole-particle indices can be cast explicitly into the form

$$ N_{\text{h - p}}^{{}} [q] = {\text{Tr}}(|\varDelta D|\,^{q} ) = \sum\nolimits_{i} {\varDelta \,_{i}^{q} } + \sum\nolimits_{a} {\lambda_{a}^{q} } . $$
(C7)

Particularly,

$$ N_{\text{h - p}}^{{}} [2] = \sum\nolimits_{i} {\varDelta \,_{i}^{2} } + \sum\nolimits_{a} {\lambda_{a}^{2} } = ||\varDelta D\,||^{2} . $$
(C8)

The previously defined EUE indices can be rewritten in terms of the correlation-dependent quantities {\( \varDelta_{i} \), \( \lambda_{a} \)}:

$$ N_{\text{odd}}^{{}} = \sum\limits_{1 \le i \le n} {(4\,\varDelta_{i} + \varDelta \,_{i}^{2} ) + \sum\limits_{a > n} {\,\lambda_{a}^{2} } } , $$
(C9)
$$ N_{\text{eff}}^{{}} = \sum\nolimits_{\,i\,} {\varDelta_{i} } + \sum\nolimits_{a} {\lambda_{a}^{{}} } = 2\sum\limits_{1 \le i \le n} {\,\varDelta_{i} } , $$
(C10)
$$ N_{\text{odd}}^{{}} \,[2] = \sum\limits_{1 \le i \le n} {[\varDelta_{i} (2 - \varDelta_{i} )]^{2} + \sum\limits_{a > n} {\,[\lambda_{a} (2 - \lambda_{a} } )]^{2} } . $$
(C11)

where we used identity (C4).

For slightly correlated systems, the most important are the first order terms in \( \varDelta_{i} \) and \( \lambda_{a} \). It gives \( N_{\text{odd}}^{{}} \cong 4\sum {\varDelta_{i} } \), so

$$ N_{\text{odd}}^{{}} \cong 2N_{\text{eff}}^{{}} , $$
(C12)

and this goes back to the rude estimation, Eq. (6.80). It is interesting that the exact interrelation \( 2N_{\text{eff}}^{{}} - N_{\text{odd}}^{{}} = \,||\varDelta D\,||^{2} \) is true. Likewise, the first-order estimation of the modified Head-Gordon index (6.94), that is Eq. (C11), is null:

$$ N_{\text{odd}}^{{}} \,\,[2] \cong 0. $$
(C13)

Indeed, Eq. (C11) contains only the second-order and higher-order terms:

$$ N_{\text{odd}}^{{}} \,\,\,\,[2] \cong 4\,(\,\sum\nolimits_{i} {\,\varDelta \,_{i}^{2} } \, + \sum\nolimits_{a} {\lambda_{a}^{2} } ) = 4||\varDelta D\,||^{2} . $$
(C14)

The above simple analysis now elucidates how small contributions from \( \varDelta_{i} \) and \( \lambda_{a} \) are essentially suppressed in the \( N_{\text{odd}}^{{}} \,\,\,[2] \) and \( N_{\text{h - p}}^{{}} [2] \) indices. As a rule, these small contributions appear mainly from dynamical correlations. For instance, MP2 (the Moller-Plesset second-order perturbation theory) normally produce the contributions of this kind. Evidently, they have no direct relation to diradicality and polyradicality, and the \( N_{\text{odd}}^{{}} \,\,\,[2] \) and \( N_{\text{h - p}}^{{}} [2] \) indices should be rather small without a significant contribution from non-dynamical correlation. This is a good property of the generalized indices such as (6.94) and (C8), and apparently, this is the basic reason why \( N_{\text{odd}}^{{}} \,\,\,[2] \) is systematically employed in papers [9, 11, 122, 124] for analyzing the unpaired electrons in large PAHs. At the same time, the dynamical correlation cannot fully ignored, and the problem of an optimal quantification remains.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luzanov, A.V. (2016). Effectively Unpaired Electrons for Singlet States: From Diatomics to Graphene Nanoclusters. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7699-4_6

Download citation

Publish with us

Policies and ethics