Skip to main content

Optical Parameters of \(\pi \)-Conjugated Oligomer Chains from the Semiempirical Local Coupled-Cluster Theory

  • Chapter
  • First Online:

Abstract

The \(\pi \)-electron semiempirical local coupled-cluster theory has been developed and used to calculate molecular optical parameters (polarizabilities and hyperpolarizabilities) of fragments of conjugated polymers. The method is based on using molecular \(\pi \)-orbitals of ethylene as an orbital basis for the conjugated systems. The method is termed the Covalent Unbonded molecules of Ethylene, cue. Based on the comparison of the calculations performed with higher levels of theory (especially with the full configuration interaction method), it has been demonstrated that for selected conjugated molecules the approach is accurate and capable of reproducing the available experimental data with good accuracy. The cue-CC results show qualitatively correct dependency on the sizes of \(\pi \)-systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The “correlation radius” is the distance between two structural cue elements of the \(\pi \)-system whose electrons are correlated by including in the CC cluster operator electron excitations from both elements.

References

  1. Adler TB, Werner HJ (2011) J Chem Phys 135(144):117

    Google Scholar 

  2. Andre JM, Delhalle J (1991) Chem Rev 91:843

    Article  CAS  Google Scholar 

  3. Bang-Jensen J, Gutin G (2007) Digraphs. Theory, algorithms and applications. Springer, London

    Google Scholar 

  4. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    Article  CAS  Google Scholar 

  5. Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291

    Article  CAS  Google Scholar 

  6. Bartlett RJ, Purvis-III GD (1979) Phys Rev A 20(4):1313

    Article  CAS  Google Scholar 

  7. Buckingham AD (1967) In: Hirschfelder JO (ed) Advances in chemical physics, vol 12. Wiley, pp 107–142

    Google Scholar 

  8. Bulat FA, Toro-Labbè A et al (2005) J Chem Phys 123(014):319

    Google Scholar 

  9. Burland DM, Miller RD, Walsh CA (1994) Chem Rev 94:31

    Article  CAS  Google Scholar 

  10. Champagne B, Perpète EA (1999) Int J Quant Chem 75:441

    Article  CAS  Google Scholar 

  11. Cheng LT, Tam W et al (19991) SHS. J Phys Chem 95:10,631

    Google Scholar 

  12. Craig GSW, Cohen RE, Schrock RR, Silbey RJ, Puccetti G (1993) J Am Chem Soc 115:860

    Article  CAS  Google Scholar 

  13. Cyvin SJ (1982) J Mol Struct (THEOCHEM) 86:315

    Article  Google Scholar 

  14. Dalgaard E, Monkhorst HJ (1983) Phys Rev A 28(3):1217

    Article  CAS  Google Scholar 

  15. Geskin VM, Brédas JL (1998) J Chem Phys 109(14):6163

    Article  CAS  Google Scholar 

  16. Geskin VM, Lambert C, Brédas JL (2003) J Am Chem Soc 125(15):651

    Google Scholar 

  17. Ghigo G, Shahi ARM, Gagliardi L, Solstad LM, Cramer CJ (2007) J Org Chem 72:2823

    Article  CAS  Google Scholar 

  18. Hampel C, Werner HJ (1996) J Chem Phys 104:6286

    Article  CAS  Google Scholar 

  19. Hess Jr BA, Schaad LJ, Ewig CS, Carsky P (1983) J Comp Comp Chem 4:53

    Google Scholar 

  20. Huzak M, Deleuze MS (2013) J Chem Phys 138(024):319

    Google Scholar 

  21. Ivanov VV, Luzanov AV (1994) Ukr Chim J (in Russian) 60:11

    CAS  Google Scholar 

  22. Ivanov VV, Luzanov AV (1997) J Struct Chem (EnglTransl) 38(1):14

    Google Scholar 

  23. Ivanov VV, Boichenko IV, Luzanov AV (1998) J Struct Chem (EnglTransl) 41(4):457

    Article  Google Scholar 

  24. Ivanov VV, Sleta LA, Klimenko TA (2007) Kharkov University Bulletin Chemical Series (in Russian) 770(15(38)):195

    Google Scholar 

  25. Ivanov VV, Zakharov AB, Adamowicz L (2013) Mol Phys 111(24):3779

    Article  CAS  Google Scholar 

  26. Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122(234):111

    Google Scholar 

  27. Karelson M, Lobanov VS (1996) Chem Rev 96:1027

    Article  CAS  Google Scholar 

  28. Kats D, Schütz M (2009) J Chem Phys 131(124):117

    Google Scholar 

  29. Kats D, Schütz M (2010) Z Phys Chem 224:601

    Article  CAS  Google Scholar 

  30. Kats D, Korona T, Schütz M (2007) J Chem Phys 127(064):107

    Google Scholar 

  31. Klimenko TA, Ivanov VV, Adamowicz L (2009) Mol Phys 107(17):1729

    Article  CAS  Google Scholar 

  32. Knab R, Förner W, Čížek J, Ladik J (1996) J Mol Struct 366:11

    Article  CAS  Google Scholar 

  33. Knowles PJ, Schütz M, Werner HJ (2000) In: Grotendorst J (ed) Modern Methods and Algorithms of Quantum Chemistry, Proceedings, vol 3, John von Neumann Institute for Computing, Jülich, chap Ab initio Methods for Electron Correlation in Molecules, p 97

    Google Scholar 

  34. Kondayya G, Shukla A (2012) Comput Phys Comm 183(4):677

    Article  CAS  Google Scholar 

  35. Korona T (2011) Theor Chem Acc 129:15

    Article  CAS  Google Scholar 

  36. Korona T, Jeziorski B (2006) J Chem Phys 125(184):109

    Google Scholar 

  37. Korona T, Werner HJ (2003) J Chem Phys 118(7):3006

    Article  CAS  Google Scholar 

  38. Korona T, Pflüger K, Werner HJ (2004) Phys Chem Chem Phys 6:2059

    Article  CAS  Google Scholar 

  39. Kummel H (1960) Nucl Phys 17:477

    Article  Google Scholar 

  40. Kurtz HA, Stewart JJP, Dieter KM (1990) J Comp Chem 11:82

    Article  CAS  Google Scholar 

  41. Lee TJ, Rice JE, Scuseria GE, Schaefer HF (1989) Theor Chim Acta 75:81

    Article  CAS  Google Scholar 

  42. Li Q, Chen L, Li Q, Shuai Z (2008) Chem Phys Lett 457:276

    Google Scholar 

  43. Li Q, Yi Y, Shuai Z (2008) J Comp Chem 29:1650

    Google Scholar 

  44. Li S, Ma J, Jiang Y (2002) J Comp Chem 23:237

    Article  CAS  Google Scholar 

  45. Limacher PA, Mikkelsen KV, Lüthi HP (2009) J Chem Phys 130(194):114

    Google Scholar 

  46. Luzanov AV (1989) Theor Exp Chem (EnglTransl) 25(1):1

    Article  CAS  Google Scholar 

  47. Luzanov AV, Ivanov VV (1997) J Struct Chem (Engl Transl) 38:863

    Article  CAS  Google Scholar 

  48. Luzanov AV, Prezhdo OV (2006) J Chem Phys 124(224):109

    Google Scholar 

  49. Luzanov AV, Pedash YF, Ivanov VV (1989) J Struct Chem (EnglTransl) 30(5):701

    Article  Google Scholar 

  50. Luzanov AV, Ivanov VV, Klimko GT, Mestechkin MM (1998) J Struct Chem (EnglTransl) 39(2):277

    Article  CAS  Google Scholar 

  51. Bass M (eds) (2009) Handbook of Optics. Optical Properties of Materials, Nonlinear Optics, Quantum Optics. McGraw Hill

    Google Scholar 

  52. Mata RA, Stoll H (2011) J Chem Phys 134(034):122

    Google Scholar 

  53. Mata RA, Werner HJ, Schütz M (2008) J Chem Phys 128(144):106

    Google Scholar 

  54. Matsen FA (1978) The unitary group and the many-body problem. In: Löwdin PO (ed) Advances in Quantum Chemistry, Advances in Quantum Chemistry, vol II. Academic Press, p 223

    Google Scholar 

  55. Matsen FA (1987) Int J Quant Chem 32:87

    Article  CAS  Google Scholar 

  56. Norman P, Luo Y, Jonsson D et al (1997) J Chem Phys 106:8788

    Article  CAS  Google Scholar 

  57. Ohno K (1964) Theor Chim Acta 2:219

    Article  CAS  Google Scholar 

  58. Oziminski WP, Palusiak M, Dominikowska J, Krygowski TM (2013) Phys Chem Chem Phys 15:3286

    Article  CAS  Google Scholar 

  59. Paldus J, Čížek J, Shavitt I (1972) Phys Rev A 5:50

    Article  Google Scholar 

  60. Pariser R, Parr RG (1953) J Chem Phys 21:466

    Article  CAS  Google Scholar 

  61. Pedash YF, Ivanov VV, Luzanov AV (1989) Theor Exp Chem (EnglTransl) 25(6):607

    Article  Google Scholar 

  62. Pipek J, Mezey PG (1989) J Chem Phys 90(9):4916

    Article  CAS  Google Scholar 

  63. Pople JA (1953) Trans Faraday Soc 49:1375

    Article  CAS  Google Scholar 

  64. Pulay P (1983) Chem Phys Lett 100(2):151

    Article  CAS  Google Scholar 

  65. Schlegel PVR et al (eds) (2004) Encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  66. Russ NJ, Crawford TD (2004) Chem Phys Lett 400:104

    Article  CAS  Google Scholar 

  67. Saebø S, Pulay P (1993) Annu Rev Phys Chem 44:213

    Article  Google Scholar 

  68. Schmidt MW, Baldridge KK, Boatz JA et al (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  69. Schütz M, Werner HJ (2001) J Chem Phys 114:661

    Article  Google Scholar 

  70. Scuseria GE, Ayala PY (1999) J Chem Phys 111(18):8330

    Article  CAS  Google Scholar 

  71. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics. MBPT and coupled cluster theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  72. Shen Y, Chen CF (2012) Chem Rev 112:1463

    Article  CAS  Google Scholar 

  73. Shuai Z, Bredas JL (2000) Phys Rev B62(23):15,452

    Google Scholar 

  74. Spingborg M, Dong Y (2004) Conjugated polymers in external dc fields. In: Sabin JR, Brändas E (eds) Advances in quantum chemistry, vol 47. Elsevier Academic Press Inc., p 269

    Google Scholar 

  75. Sugimoto T, Yoshida Z (1990) Pure Appl Chem 62:551

    Article  CAS  Google Scholar 

  76. Sugimoto T, Shibata M, Yoneda S, Yoshida Z et al (1986) J Am Chem Soc 108:7032

    Article  CAS  Google Scholar 

  77. Sugimoto T, Shibata M et al (1991) Angew Chem 4:454

    Google Scholar 

  78. Thouless DJ (1960) Nucl Phys 21:225

    Article  CAS  Google Scholar 

  79. Čížek J (1966) J Chem Phys 45(11):4256

    Article  Google Scholar 

  80. Visotski YB, Briantsev BC (2004) Quantum chemistry of radicals and ion-radicals with conjugated bonds. DonGuet, Donetsk

    Google Scholar 

  81. Waite J, Papadopoulos MG (1983) J Comp Chem 4:578

    Article  CAS  Google Scholar 

  82. Waite J, Papadopoulos MG (1989) J Chem Phys 91:791

    Article  Google Scholar 

  83. Wergifosse M, Champagne B (2011) J Chem Phys 134(074):113

    Google Scholar 

  84. Werner HJ, Schütz M (2011) J Chem Phys 135(144):116

    Google Scholar 

  85. Wheatley RJ (2008) J Comput Chem 29(3):445

    Article  CAS  Google Scholar 

  86. Zakharov AB, Ivanov VV (2011) J Struct Chem (Engl Transl) 52(4):645

    Google Scholar 

  87. Zakharov AB, Ivanov VV (2011) Kharkov University Bulletin Chemical Series 976(20(43)):9 (in Russian)

    Google Scholar 

  88. Zakharov AB, Ivanov VV, Adamowicz L (2014) J Phys Chem C 118:8111

    Article  CAS  Google Scholar 

  89. Zhang D, Liu C (2011) J Chem Phys 135(134):117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton B. Zakharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zakharov, A.B., Ivanov, V.V., Adamowicz, L. (2016). Optical Parameters of \(\pi \)-Conjugated Oligomer Chains from the Semiempirical Local Coupled-Cluster Theory. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7699-4_3

Download citation

Publish with us

Policies and ethics