Skip to main content

Iodine Containing Drugs: Complexes of Molecular Iodine and Tri-iodide with Bioorganic Ligands and Lithium Halogenides in Aqueous Solutions

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry IV

Abstract

This chapter reviews the results of molecular modeling of iodine-containing drugs. They are active ingredients of mixtures that in aqueous solutions consist of molecular iodine, bio-organic ligands, and potassium and lithium halogenides. In these drugs molecular iodine is in such an active form that after oral administration it minimizes toxic effects in humans. Previously it was shown that the active complex (AC) of the drugs contains molecular iodine that is located inside α-helix of dextrin and is coordinated by lithium halides and polypeptides (LiI5-α-dextrin polypeptide). In these types of complexes the electronic structure of the I2 molecule is different from the electronic structure of I2 in complexes with organic ligands, or in its free state. Interestingly, in the AC the molecular iodine exhibits acceptor properties with respect to polypeptides, and donor properties with respect to lithium halide. Our group was the first to propose the molecular model of active complexes of the iodine-containing drugs. This was based on the results of calculations performed using the DFT-B3PW91/midi approach. Model system of the water-glycine KI3-LiCl-ethanol was considered in this study. The calculations of the spectral parameters of the proposed structures are in good agreement with the experimental data of UV and IR spectral investigations. We have shown that α-dextrins ensure the presence in the studied mixtures of the three active centers located within the α-dextrin helix: molecular iodine coordinated lithium halogenides and polypeptides, triiodide, and lithium halogenides. Using UV spectroscopy, the interaction of α-dextrin-LiCl(I)-I2-polypeptid with the AGA nucleotide triplet was investigated. Comparison of the quantum chemical calculations carried out for electronic transitions obtained for the structure that models the interaction of α-dextrin-LiCl(I)-I2-polypeptid with the nucleotide triplet indicates that the DNA nucleotides can displace polypeptide and form stable complexes with molecular iodine and lithium halogenides. In such structures, molecular iodine binds both the nucleotide triplet and lithium halogenides. We have shown that the presence of molecular iodine is vital for activity of compounds that inhibit the active site of HIV-1 integrase. Iodine prevents the active site of integrase from the formation of a complex with HIV DNA and inhibits the active complex of integrase and viral DNA, becoming the center of another nucleoprotein complex, and binding together the active site of integrase and viral DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svensson PH, Kloo L (2003) Chem Rev 103:1649

    Article  CAS  Google Scholar 

  2. Zhang FS, Lynden-Bell RM (2005) Eur Phys J D 34:129

    Article  CAS  Google Scholar 

  3. Jena NK, Josefsson I, Eriksson SK, Hagfeldt A, Siegbahn H, Bjorneholm O, Rensmo H, Odelius M (2015) Chem Eur J 21:4049

    Article  CAS  Google Scholar 

  4. Shilov GV, Kasheva ON, Deshenko OA, Chernovenc MS, Simonen CC, Goleva VE, Pishev AI (2002) Russ J Phys Chem 76:1295

    Google Scholar 

  5. Grozema FC, Zijstra RJ, Swart M, Duijnen PT (1999) Int J Quantum Chem 75:709

    Article  CAS  Google Scholar 

  6. Su JT, Zewail AH (1998) J Phys Chem A 102:4082

    Google Scholar 

  7. Engel PS, Duan S, Whitmire KH (1998) J Org Chem 63:5666

    Article  CAS  Google Scholar 

  8. Esseffar M, Bouah W, Lamsabbi A, Abboud JM, Notario R, Yanez M (2000) J Am Chem Soc 122:2300

    Google Scholar 

  9. Daga V, Hadjikakou SK, Hadjliadis N, Kubieki M, Santos JHZ, Butler IS (2002) Eur J Inorg Chem 7:1718

    Article  Google Scholar 

  10. Antoniadis CD, Hadjikakou SK, Hadjiliadies N, Kubieki M, Butler IS (2004) Eur J Inorg Chem 21:4324

    Google Scholar 

  11. Moulay S (2013) J Polym Eng 33(5):389

    Article  CAS  Google Scholar 

  12. Nessreen A, Al-Hashimi, Hussein YHA (2010) Spectrochim Acta Part A 75:198

    Google Scholar 

  13. Khouba Z, Benabdallah T, Maschke U (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 125:61

    Article  CAS  Google Scholar 

  14. Karlsen EM, Spanget-Larsen J (2009) Chem Phys Lett 473:227

    Article  CAS  Google Scholar 

  15. Karuma T, Neelima K, Venkateshwarlu G, Swamy PY (2006) J Sci Ind 65:808

    Google Scholar 

  16. Lagoce JF, Jambut-Absil AC, Buxeraud J, Moesch C, Raby C (1990) Chem Pharm Bull 38(8):2172

    Article  Google Scholar 

  17. International Application (2000) Ilyin Alexandr, Gab-rielyan Emil, Mkhitaryan, Levon Antiviral and antibacte-rial pharmaceutical preparation “Armenicum” And its use for treatment of infectious diseases. Patent No.: PCT/AM 2000/000002

    Google Scholar 

  18. Mkhitaryan LM, Davtyan TK, Gabrielyan ES, Gevorkyan LA (2007) Int J Biotechnol 9(3,4):301

    Google Scholar 

  19. Ilin AI, Kulmanov ME (2004) Bactericide and viricidal pharmaceutical preparation for prophylaxis and treatment mono and mixtinfections, manner of prophy-laxis o/or treatment viral, bacterium and mixtinfection. Patent No.: 15116

    Google Scholar 

  20. Yuldasheva GA, Zhidomirov GM, Ilin AI (2012) Biotechnol Appl Biochem 59(1):29

    Article  CAS  Google Scholar 

  21. Yuldasheva GA, Zhidomirov GM, Leszczynski J, Ilin AI (2013) J Mol Struct 1033:321

    Article  CAS  Google Scholar 

  22. Nagaoka M, Okuyama-Yoshida N (1998) J Phys Chem A 102(42):8202

    Article  CAS  Google Scholar 

  23. Grasjo J, Andersson E, Forsberg J, Duda L, Henke E, Pokapanich W, Bjrneholm O, Andersson J, Pietzsch A, Hennies F, Rubensson JE (2009) J Phys Chem B 113(49):16002

    Article  Google Scholar 

  24. Hwang TK, Eom G-Y, Choi M-S, Jang S-W, Kim J-Y, Lee S (2011) J Phys Chem B 115(33):10147

    Google Scholar 

  25. Aikens CH, Gordon MS (2006) J Am Chem Soc 128(39):12835

    Article  CAS  Google Scholar 

  26. Rahaman O, van Duin ACT, Goddard WA, Doren DJ (2011) J Phys Chem B 115(2):249

    Article  CAS  Google Scholar 

  27. Tajkhorshid E, Jalkanen KJ, Suhai S (1998) J Phys Chem B 102(30):5899

    Article  CAS  Google Scholar 

  28. Minkov VS, Chesalov UA, Boldyreva EV (2010) J Struct Chem 51(6):1091

    Google Scholar 

  29. Thoma JA, French D (1960) J Am Chem Soc 82:4144

    Article  CAS  Google Scholar 

  30. Klamt A, Schuurmann, GJ (1993) Chem Soc Perkin Trans 2:799

    Google Scholar 

  31. Shart SB, Gellene GI (1997) J Phys Chem A 101:2192

    Article  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  33. Parsons CL, Corliss HP (1910) J Am Chem Soc. 32(11):1367

    Google Scholar 

  34. Immel S, Lichtenthaler FW (2000) Starch 52(1):1

    Article  CAS  Google Scholar 

  35. Refat MS, Killa HMA, Hamada MA, El-Sayed MY (2011) Bull Chem Soc Ethiop 25(1):137

    Article  CAS  Google Scholar 

  36. Refat MS, Killa HMA, El-Maghraby A, El-Sayed MY (2012) Bul Chem Commun 44(1):74

    CAS  Google Scholar 

  37. Burgess AE, Davidson JC (2012) J Chem Educ 89:814–816

    Google Scholar 

  38. Calabrese VT, Arshad Khan A (2000) J Phys Chem A 104:1287

    Google Scholar 

  39. Gerasimova GV, Variamova TM, Mushtakova SP (2008) Russ J Phys Chem Desember 82(12):2235

    Google Scholar 

  40. Kebede Z, Lindquist SE (1999) Sol Energy Mater Sol Cells 57:259

    Article  CAS  Google Scholar 

  41. Stern JH, Passchier AA (1962) J Phys Chem 66:752

    Google Scholar 

  42. Turner DH, Flynn GW, Sutin N, Beitz JV (1972) J Am Chem Soc 94(5):1554

    Article  CAS  Google Scholar 

  43. Cherenkova UA, Kotova DL, Kricanova TA, Selemenev BF (2008) Sorpt Chromatogr process 8(2):314

    Google Scholar 

  44. Shart SB, Gellene GI (1997) J Phys Chem A 101:2192

    Article  Google Scholar 

  45. Gottardi W (1999) Arch Pharm Pharm Med Chem 332:151

    Article  CAS  Google Scholar 

  46. Gottardi W (1991) in Disinfection, Sterilization and Preservation (Ed.:S.S.Block), Lea & Febiger, Philadelphia, chapter 8

    Google Scholar 

  47. Eaman AS, AL-Rubaee (2014) Int J Sci Nat 5(1):22

    Google Scholar 

  48. Rosu F, Gabelica V, Pauw ED, Antoine R, Broyer M, Dugourd P (2012) J Phys Chem A 116:5383

    Article  CAS  Google Scholar 

  49. Wani A, Mushtaq S, Ahsan H, Ahmad R (2012) Asian J Biomed Pharm Sci 2(13):23

    Google Scholar 

  50. Perveen F, Qureshi R, Ansari FL, Kalsoom S, Ahmed S (2011) J Mol Struct 1004:67

    Article  CAS  Google Scholar 

  51. Sirajuddin M, Saqib Ali, Badshah A (2013) J Photochem Photobiol B Biol 124:1

    Google Scholar 

  52. Yuldasheva G, Argirova R, Ilin A (2015) AIDS Clin Res 6(6):2

    Google Scholar 

  53. Yuldasheva G, Zhidomirov G, Ilin A (2011) Nat Sci 3(7):573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulnara A. Yuldasheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yuldasheva, G.A., Zhidomirov, G.M., Leszczynski, J., Ilin, A.I. (2016). Iodine Containing Drugs: Complexes of Molecular Iodine and Tri-iodide with Bioorganic Ligands and Lithium Halogenides in Aqueous Solutions. In: Leszczynski, J., Shukla, M. (eds) Practical Aspects of Computational Chemistry IV. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7699-4_10

Download citation

Publish with us

Policies and ethics