Skip to main content

Therapeutic Strategies Harnessing Oxidative Stress to Treat Stroke

  • Chapter
  • First Online:
Studies on Atherosclerosis

Abstract

Oxidative stress is a major mechanism responsible for damage in ischemic stroke. Other than tissue plasminogen activator and antiplatelet agents, no pharmacological interventions have been translated into an effective treatment for stroke. As yet, there have been no unequivocally successful clinical applications of antioxidants to scavenge reactive oxygen or nitrogen species (ROS/RNS) in stroke, with some even suggested to have a detrimental effect.

Edaravone, a low-molecular weight scavenger of hydroxyl, peroxyl, and superoxide radicals that readily crosses the blood–brain barrier, was approved in 2001 in Japan for use in ischemic stroke within 24 h of the attack. However, other notable compounds such as NXY-059, a nitrone with free radical scavenging ability that fufilled nearly all of the Stroke Therapy Industry Roundtable (STAIR) criteria, still failed to make it to the clinic. NADPH oxidase inhibitors have shown promise, but are yet to be validated in clinical trials. Any prospective neuroprotective agent targeting oxidative stress would buy time to delay the ischaemic cascade, pending imaging to permit definitive restoration of blood flow.

A small molecule inhibitor of oxidative stress is unlikely to provide the panacea for ischemic stroke. Instead, targeting the ischemic cascade and resultant oxidative stress at its origin, in combination with optimization of physiological parameters and consideration of the neurovascular unit as a whole, is likely to be more effective than mere damage limitation. This chapter will discuss recent and current experimental and clinical data on therapeutic strategies targeting oxidative stress in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ASA:

Acetylsalicylic acid

AT-1:

Angiotensin-1 receptor 1

AVASAS:

Aspirin versus ascorbic acid plus aspirin in stroke

DNA:

Deoxyribonucleic acid

EAAT-1:

Excitatory amino acid transporter-1

HMG-CoA:

3-Hydroxy-3-methyl-glutaryl-CoA reductase

HO :

Hydroxyl radical

H2O2 :

Hydrogen peroxide

mRS:

Modified Rankin Scale

NADPH:

Nicotinamide adenine dinucleotide phosphate

NDMA:

N-Methyl-d-aspartate

NIHSS:

National Institutes of Health Stroke Scale

NO:

Nitric oxide

NOS:

Nitric oxide synthase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

rtPA:

Recombinant tissue plasminogen activator

SOD:

Superoxide dismutase

VISTA:

Virtual International Stroke Trials Archive

References

  1. Geeganage C, Bath PM. Interventions for deliberately altering blood pressure in acute stroke. Cochrane Database Syst Rev. 2008;4:CD000039.

    Google Scholar 

  2. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–7.

    Article  Google Scholar 

  3. Balami JS, Sutherland BA, Edmunds LD, Grunwald IQ, Neuhaus AA, Hadley G, et al. A systematic review and meta-analysis of randomized controlled trials of endovascular thrombectomy compared with best medical treatment for acute ischemic stroke. Int J Stroke. 2015;10(8):1168–78.

    Google Scholar 

  4. Cimino M, Gelosa P, Gianella A, Nobili E, Tremoli E, Sironi L. Statins: multiple mechanisms of action in the ischemic brain. Neuroscientist. 2007;13(3):208–13.

    Google Scholar 

  5. Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 2005;38(11):1433–44. Review.

    Article  CAS  PubMed  Google Scholar 

  6. Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J. Free radicals in cerebral ischemia. Stroke. 1978;9(5):445–7.

    Article  CAS  PubMed  Google Scholar 

  7. Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther. 2006;111(3):928–48. Epub 2006 Apr 17.

    Article  CAS  PubMed  Google Scholar 

  8. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4(7):552–65.

    Article  CAS  PubMed  Google Scholar 

  9. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985;312(3):159–63.

    Article  CAS  PubMed  Google Scholar 

  10. Neuhaus A et al. Importance of preclinical research in the development of neuroprotective strategies for ischemic stroke. JAMA Neurol. 2014;71:634–9.

    Article  PubMed  Google Scholar 

  11. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002;282(2):C227–41.

    Article  CAS  PubMed  Google Scholar 

  12. Hossmann K-A. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab. 2012;32(7):1310–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shichinohe H et al. Neuroprotective effects of the free radical scavenger edaravone (MCI-186) in mice permanent focal brain ischemia. Brain Res. 2004;1029(2):200–6.

    Article  CAS  PubMed  Google Scholar 

  14. Manzanero S, Santro T, Arumugam TV. Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int. 2013;62(5):712–8. doi:10.1016/j.neuint.2012.11.009. Epub 2012 Nov 29. Review.

    Article  CAS  PubMed  Google Scholar 

  15. Pál P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58(1):87–114.

    Article  CAS  Google Scholar 

  16. Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, Kleinschnitz C. Neuroprotection for ischaemic stroke: translation from the bench to the bedside. Int J Stroke. 2012;7(5):407–18. doi:10.1111/j.1747-4949.2012.00770.x. Epub 2012 Mar 6.

    Article  PubMed  Google Scholar 

  17. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78(11):6858–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amaro S, Chamorro A. Translational stroke research of the combination of thrombolysis and antioxidant therapy. Stroke. 2011;42(5):1495–9.

    Article  CAS  PubMed  Google Scholar 

  19. Du Y, Chen CP, Tseng CY, Eisenberg Y, Firestein BL. Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicity. Glia. 2007;55(5):463–72.

    Article  PubMed  Google Scholar 

  20. Holme I, Aastveit AH, Hammar N, Jungner I, Walldius G. Uric acid and risk of myocardial infarction, stroke and congestive heart failure in 417,734 men and women in the Apolipoprotein MOrtality RISk study (AMORIS). J Intern Med. 2009;266(6):558–70. doi:10.1111/j.1365-2796.2009.02133.x. Epub 2009 May 26.

    Article  CAS  PubMed  Google Scholar 

  21. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum. 2009;61(7):885–92. doi:10.1002/art.24612.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen JH, Chuang SY, Chen HJ, Yeh WT, Pan WH. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum. 2009;61(2):225–32. doi:10.1002/art.24164.

    Article  CAS  PubMed  Google Scholar 

  23. Chamorro A, Planas AM, Muner DS, Deulofeu R. Uric acid administration for neuroprotection in patients with acute brain ischemia. Med Hypotheses. 2004;62(2):173–6.

    Article  CAS  PubMed  Google Scholar 

  24. Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med. 1999;131(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  25. Waring WS. Uric acid: an important antioxidant in acute ischaemic stroke. QJM. 2002;95(10):691–3.

    Article  CAS  PubMed  Google Scholar 

  26. Bos MJ, Koudstaal PJ, Hofman A, Witteman JC, Breteler MM. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke. 2006;37(6):1503–7. Epub 2006 May 4.

    Article  CAS  PubMed  Google Scholar 

  27. Storhaug HM, Norvik JV, Toft I, Eriksen BO, Løchen ML, Zykova S, et al. Uric acid is a risk factor for ischemic stroke and all-cause mortality in the general population: a gender specific analysis from The Tromsø Study. BMC Cardiovasc Disord. 2013;13:115. doi:10.1186/1471-2261-13-115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Weir CJ, Muir SW, Walters MR, Lees KR. Serum urate as an independent predictor of poor outcome and future vascular events after acute stroke. Stroke. 2003;34(8):1951–6. Epub 2003 Jul 3.

    Article  PubMed  Google Scholar 

  29. Dawson J, Lees KR, Weir CJ, Quinn T, Ali M, Hennerici MG, et al. Baseline serum urate and 90-day functional outcomes following acute ischemic stroke. Cerebrovasc Dis. 2009;28(2):202–3. doi:10.1159/000226580. Epub 2009 Jun 30.

    Article  PubMed  Google Scholar 

  30. Dawson J, Quinn TJ, Harrow C, Lees KR, Walters MR. The effect of allopurinol on the cerebral vasculature of patients with subcortical stroke; a randomized trial. Br J Clin Pharmacol. 2009;68(5):662–8. doi:10.1111/j.1365-2125.2009.03497.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kurzepa J, Bielewicz J, Stelmasiak Z, Bartosik-Psujek H. Serum bilirubin and uric acid levels as the bad prognostic factors in the ischemic stroke. Int J Neurosci. 2009;119(12):2243–9.

    Article  CAS  PubMed  Google Scholar 

  32. Chiquete E, Ruiz-Sandoval JL, Murillo-Bonilla LM, Arauz A, Orozco-Valera DR, Ochoa-Guzmán A, et al. Serum uric acid and outcome after acute ischemic stroke: PREMIER study. Cerebrovasc Dis. 2013;35(2):168–74. doi:10.1159/000346603. Epub 2013 Feb 22.

    Article  CAS  PubMed  Google Scholar 

  33. Chamorro A, Obach V, Cervera A, Revilla M, Deulofeu R, Aponte JH. Prognostic significance of uric acid serum concentration in patients with acute ischemic stroke. Stroke. 2002;33(4):1048–52.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang B, Gao C, Yang N, Zhang W, Song X, Yin J, et al. Is elevated SUA associated with a worse outcome in young Chinese patients with acute cerebral ischemic stroke? BMC Neurol. 2010;10:82. doi:10.1186/1471-2377-10-82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lee SH, Heo SH, Kim JH, Lee D, Lee JS, Kim YS, et al. Effects of uric acid levels on outcome in severe ischemic stroke patients treated with intravenous recombinant tissue plasminogen activator. Eur Neurol. 2013;71(3-4):132–9 [Epub ahead of print].

    Article  PubMed  CAS  Google Scholar 

  36. Chamorro Á, Amaro S, Castellanos M, Segura T, Arenillas J, Martí-Fábregas J, et al. Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomised, double-blind phase 2b/3 trial. Lancet Neurol. 2014;13(5):453–60.

    Article  CAS  PubMed  Google Scholar 

  37. Romanos E, Planas AM, Amaro S, Chamorro A. Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab. 2007;27(1):14–20. Epub 2006 Apr 5.

    Article  CAS  PubMed  Google Scholar 

  38. Amaro S, Obach V, Cervera A, Urra X, Gómez-Choco M, Planas AM, et al. Course of matrix metalloproteinase-9 isoforms after the administration of uric acid in patients with acute stroke: a proof-of-concept study. J Neurol. 2009;256(4):651–6. doi:10.1007/s00415-009-0153-6. Epub 2009 Apr 27.

    Article  CAS  PubMed  Google Scholar 

  39. Amaro S, Soy D, Obach V, Cervera A, Planas AM, Chamorro A. A pilot study of dual treatment with recombinant tissue plasminogen activator and uric acid in acute ischemic stroke. Stroke. 2007;38(7):2173–5. Epub 2007 May 24.

    Article  CAS  PubMed  Google Scholar 

  40. Taheraghdam AA, Sharifipour E, Pashapour A, Namdar S, Hatami A, Houshmandzad S, et al. Allopurinol as a preventive contrivance after acute ischemic stroke in patients with a high level of serum uric acid: a randomized, controlled trial. Med Princ Pract. 2014;23:134–9. doi:10.1159/000355621. Epub 2013 Nov 27.

    PubMed  Google Scholar 

  41. Khan F, George J, Wong K, McSwiggan S, Struthers AD, Belch JJ. Allopurinol treatment reduces arterial wave reflection in stroke survivors. Cardiovasc Ther. 2008;26(4):247–52. doi:10.1111/j.1755-5922.2008.00057.x.

    Article  CAS  PubMed  Google Scholar 

  42. Muir SW, Harrow C, Dawson J, Lees KR, Weir CJ, Sattar N, et al. Allopurinol use yields potentially beneficial effects on inflammatory indices in those with recent ischemic stroke: a randomized, double-blind, placebo-controlled trial. Stroke. 2008;39(12):3303–7. doi:10.1161/STROKEAHA.108.519793. Epub 2008 Oct 9.

    Article  CAS  PubMed  Google Scholar 

  43. Proctor PH. Uric acid and neuroprotection. Stroke. 2008;39(8), e126. doi:10.1161/STROKEAHA.108.524462. Epub 2008 Jun 19.

    Article  PubMed  Google Scholar 

  44. Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother. 2010;11(10):1753–63. doi:10.1517/14656566.2010.493558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis. 2003;15(3):222–9.

    Article  CAS  Google Scholar 

  46. Sharma P, Sinha M, Shukla R, Garg RK, Verma R, Singh MK. A randomized controlled clinical trial to compare the safety and efficacy of edaravone in acute ischemic stroke. Ann Indian Acad Neurol. 2011;14(2):103–6. doi:10.4103/0972-2327.82794.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Unno Y, Katayama M, Shimizu H. Does functional outcome in acute ischaemic stroke patients correlate with the amount of free-radical scavenger treatment? A retrospective study of edaravone therapy. Clin Drug Investig. 2010;30(3):143–55. doi:10.2165/11535500-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang M, Xu L, Deng L, Lu J, Ren H, Yang Q, et al. Efficacy and safety evaluation of edaravone injection in treatment of acute cerebral infarction: a multicenter, double-blind, and randomized controlled clinical trial. Chin J New Drugs Clin Remedies. 2007;26(2):105–8.

    Google Scholar 

  49. Zhou M, Yang J, He L. Randomized controlled trial of edaravone injection in the treatment of acute cerebral infarction. Modern Preventive Medicine. 2007;34:966–8.

    Google Scholar 

  50. Feng S, Yang Q, Liu M, Li W, Yuan W, Zhang S, et al. Edaravone for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;12:007230. doi:10.1002/14651858.CD007230.pub2.

    Google Scholar 

  51. Yang J, Cui X, Li J, Zhang C, Zhang J, Liu M. Edaravone for acute stroke: meta-analyses of data from randomized controlled trials. Dev Neurorehabil. 2013;2 [Epub ahead of print].

    Google Scholar 

  52. Ishibashi A, Yoshitake Y, Adachi H. Investigation of effect of edaravone on ischemic stroke. Kurume Med J. 2013;2 [Epub ahead of print].

    Google Scholar 

  53. Siesjo BK, Agardh CD, Bengtsson F. Free radicals and brain damage. Cerebrovasc Brain Metab Rev. 1989;1:165–211.

    CAS  PubMed  Google Scholar 

  54. Mishina M, Komaba Y, Kobayashi S, Tanaka N, Kominami S, Fukuchi T, et al. Efficacy of edaravone, a free radical scavenger, for the treatment of acute lacunar infarction. Neurol Med Chir (Tokyo). 2005;45(7):344–8. discussion 348.

    Article  Google Scholar 

  55. Ohta Y, Takamatsu K, Fukushima T, Ikegami S, Takeda I, Ota T, et al. Efficacy of the free radical scavenger, edaravone, for motor palsy of acute lacunar infarction. Intern Med. 2009;48(8):593–6. Epub 2009 Apr 15.

    Article  PubMed  Google Scholar 

  56. Inatomi Y, Takita T, Yonehara T, Fujioka S, Hashimoto Y, Hirano T, et al. Efficacy of edaravone in cardioembolic stroke. Intern Med. 2006;45(5):253–7. Epub 2006 Apr 3.

    Article  PubMed  Google Scholar 

  57. Toyoda K, Fujii K, Kamouchi M, Nakane H, Arihiro S, Okada Y, et al. Free radical scavenger, edaravone, in stroke with internal carotid artery occlusion. J Neurol Sci. 2004;221(1-2):11–7.

    Article  CAS  PubMed  Google Scholar 

  58. Kaste M, Murayama S, Ford GA, Dippel DW, Walters MR, Tatlisumak T, et al. Safety, tolerability and pharmacokinetics of MCI-186 in patients with acute ischemic stroke: new formulation and dosing regimen. Cerebrovasc Dis. 2013;36(3):196–204. doi:10.1159/000353680. Epub 2013 Oct 12.

    Article  CAS  PubMed  Google Scholar 

  59. Wada T, Yasunaga H, Inokuchi R, Horiguchi H, Fushimi K, Matsubara T, et al. Effects of edaravone on early outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen activator. J Neurol Sci. 2014;pii:S0022-510X(14)00464-X. doi:10.1016/j.jns.2014.07.018.

    Google Scholar 

  60. Kimura K, Aoki J, Sakamoto Y, Kobayashi K, Sakai K, Inoue T, et al. Administration of edaravone, a free radical scavenger, during t-PA infusion can enhance early recanalization in acute stroke patients—a preliminary study. J Neurol Sci. 2012;313(1-2):132–6. doi:10.1016/j.jns.2011.09.006. Epub 2011 Oct 2.

    Article  CAS  PubMed  Google Scholar 

  61. Kono S, Deguchi K, Morimoto N, Kurata T, Yamashita T, Ikeda Y, et al. Intravenous thrombolysis with neuroprotective therapy by edaravone for ischemic stroke patients older than 80 years of age. J Stroke Cerebrovasc Dis. 2013;22(7):1175–83.

    Article  PubMed  Google Scholar 

  62. Shinohara Y, Saito I, Kobayashi S, Uchiyama S. Edaravone (radical scavenger) versus sodium ozagrel (antiplatelet agent) in acute noncardioembolic ischemic stroke (EDO trial). Cerebrovasc Dis. 2009;27(5):485–92. doi:10.1159/000210190. Epub 2009 Mar 26.

    Article  CAS  PubMed  Google Scholar 

  63. Shinohara Y, Inoue S. Cost-effectiveness analysis of the neuroprotective agent edaravone for noncardioembolic cerebral infarction. J Stroke Cerebrovasc Dis. 2013;22(5):668–74. doi:10.1016/j.jstrokecerebrovasdis.2012.04.002.

    Article  PubMed  Google Scholar 

  64. Imai K, Mori T, Izumoto H, Takabatake N, Kunieda T, Watanabe M. Hyperbaric oxygen combined with intravenous edaravone for treatment of acute embolic stroke: a pilot clinical trial. Neurol Med Chir (Tokyo). 2006;46(8):373–8. discussion 378.

    Article  Google Scholar 

  65. Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener HC, et al. NXY-059 for acute ischemic stroke. N Engl J Med. 2006;354(6):588–600.

    Article  CAS  PubMed  Google Scholar 

  66. Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71.

    Article  CAS  PubMed  Google Scholar 

  67. Diener HC, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke. 2008;39(6):1751–8. doi:10.1161/STROKEAHA.107.503334.

    Article  CAS  PubMed  Google Scholar 

  68. Sharpe PC, Mulholland C, Trinick T. Ascorbate and malondialdehyde in stroke patients. Ir J Med Sci. 1994;163(11):488–91.

    Article  CAS  PubMed  Google Scholar 

  69. Polidori MC, Praticó D, Ingegni T, Mariani E, Spazzafumo L, Del Sindaco P, et al. Effects of vitamin C and aspirin in ischemic stroke-related lipid peroxidation: results of the AVASAS (Aspirin Versus Ascorbic acid plus Aspirin in Stroke) Study. Biofactors. 2005;24(1-4):265–74.

    Article  CAS  PubMed  Google Scholar 

  70. Lagowska-Lenard M, Stelmasiak Z, Bartosik-Psujek H. Influence of vitamin C on markers of oxidative stress in the earliest period of ischemic stroke. Pharmacol Rep. 2010;62(4):751–6.

    Article  CAS  PubMed  Google Scholar 

  71. Ullegaddi R, Powers HJ, Gariballa SE. Antioxidant supplementation with or without B-group vitamins after acute ischemic stroke: a randomized controlled trial. JPEN J Parenter Enteral Nutr. 2006;30(2):108–14.

    Article  CAS  PubMed  Google Scholar 

  72. Rabadi MH, Kristal BS. Effect of vitamin C supplementation on stroke recovery: a case-control study. Clin Interv Aging. 2007;2(1):147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33–44. doi:10.1001/jama.2013.282834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schürks M, Glynn RJ, Rist PM, Tzourio C, Kurth T. Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials. BMJ. 2010;341:c5702. doi:10.1136/bmj.c5702.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight p. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342(3):154–60.

    Article  CAS  PubMed  Google Scholar 

  76. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352(23):2379–88.

    Article  CAS  PubMed  Google Scholar 

  77. Wagner AH, Köhler T, Rückschloss U, Just I, Hecker M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 2000;20(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  78. Wassmann S, Laufs U, Bäumer AT, Müller K, Konkol C, Sauer H, et al. Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol. 2001;59(3):646–54.

    CAS  PubMed  Google Scholar 

  79. Endres M, Laufs U, Liao JK, Moskowitz MA. Targeting eNOS for stroke protection. Trends Neurosci. 2004;27(5):283–9.

    Article  CAS  PubMed  Google Scholar 

  80. Szczepańska-Szerej A, Kurzepa J, Wojczal J, Stelmasiak Z. Simvastatin displays an antioxidative effect by inhibiting an increase in the serum 8-isoprostane level in patients with acute ischemic stroke: brief report. Clin Neuropharmacol. 2011;34(5):191–4. doi:10.1097/WNF.0b013e3182309418.

    Article  PubMed  CAS  Google Scholar 

  81. Squizzato A, Romualdi E, Dentali F, Ageno W. Statins for acute ischemic stroke. Cochrane Database Syst Rev. 2011;8, CD007551. doi:10.1002/14651858.CD007551.pub2.

    Google Scholar 

  82. The RANTTAS Investigators. A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS). Stroke. 1996;27(9):1453–8. http://www.ncbi.nlm.nih.gov/pubmed/8784112.

  83. Sena E, Wheble P, Sandercock P, Macleod M. Systematic review and meta-analysis of the efficacy of tirilazad in experimental stroke. Stroke. 2007;38(2):388–94. Epub 2007 Jan 4.

    Article  CAS  PubMed  Google Scholar 

  84. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science. 2002;298(5594):846–50.

    Article  CAS  PubMed  Google Scholar 

  85. Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science. 1999;284(5421):1845–8.

    Article  CAS  PubMed  Google Scholar 

  86. Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL, Terbrugge KG, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11(11):942–50. doi:10.1016/S1474-4422(12)70225-9.

    Article  CAS  PubMed  Google Scholar 

  87. Kahles T, Brandes RP. NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci. 2012;69(14):2345–63. doi:10.1007/s00018-012-1011-8. Epub 2012 May 23.

    Article  CAS  PubMed  Google Scholar 

  88. Arai K et al. Cellular mechanisms of neurovascular damage and repair after stroke. J Child Neurol. 2011;26(9):1193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gürsoy-Ozdemir Y, Can A, Dalkara T. Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke. 2004;35(6):1449–53.

    Article  PubMed  CAS  Google Scholar 

  90. Lee BJ et al. Edaravone, a free radical scavenger, protects components of the neurovascular unit against oxidative stress in vitro. Brain Res. 2010;1307:22–7.

    Article  CAS  PubMed  Google Scholar 

  91. Soares BP et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke. 2010;41(1):e34–40.

    Article  PubMed  Google Scholar 

  92. Ames A et al. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52(2):437–53.

    PubMed  PubMed Central  Google Scholar 

  93. Del Zoppo GJ. Toward the neurovascular unit. A journey in clinical translation: 2012 Thomas Willis Lecture. Stroke. 2013;44(1):263–9.

    Article  PubMed  Google Scholar 

  94. Hossmann KA. Reperfusion of the brain after global ischemia: hemodynamic disturbances. Shock (Augusta, GA). 1997;8(2):95–101. discussion 102–3.

    Article  CAS  Google Scholar 

  95. Yemisci M et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15(9):1031–7.

    Article  CAS  PubMed  Google Scholar 

  96. Hall CN et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aronowski J, Strong R, Grotta JC. Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab. 1997;17(10):1048–56.

    Article  CAS  PubMed  Google Scholar 

  98. Yang GY, Betz L. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke. 1994;25(8):1658–64.

    Article  CAS  PubMed  Google Scholar 

  99. Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17(11):1391–401.

    Article  CAS  PubMed  Google Scholar 

  100. Pluta RM et al. Effects of nitric oxide on reactive oxygen species production and infarction size after brain reperfusion injury. Neurosurgery. 2001;48(4):884–92. discussion 892–3.

    CAS  PubMed  Google Scholar 

  101. Piironen K, Tiainen M, Mustanoja S, Kaukonen KM, Meretoja A, Tatlisumak T, et al. Mild hypothermia after intravenous thrombolysis in patients with acute stroke: a randomized controlled trial. Stroke. 2014;45(2):486–91. doi:10.1161/STROKEAHA.113.003180. Epub 2014 Jan 16.

    Article  CAS  PubMed  Google Scholar 

  102. Southerland AM, Johnston KC. Considering hyperglycemia and thrombolysis in the Stroke Hyperglycemia Insulin Network Effort (SHINE) trial. Ann N Y Acad Sci. 2012;1268:72–8. doi:10.1111/j.1749-6632.2012.06731.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Radermecker RP, Scheen AJ. Management of blood glucose in patients with stroke. Diabetes Metab. 2010;36 Suppl 3:S94–9. doi:10.1016/S1262-3636(10)70474-2.

    Article  CAS  PubMed  Google Scholar 

  104. Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 2010;8(9):pii:1000479. doi:10.1371/journal.pbio.1000479.

    Article  CAS  Google Scholar 

  105. Papadakis M, Hadley G, Xilouri M, Hoyte LC, Nagel S, McMenamin MM, et al. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat Med. 2013;19(3):351–7. doi:10.1038/nm.3097. Epub 2013 Feb 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Stroke Therapy Academic Industry Roundtable. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30(12):2752–8. Review.

    Article  Google Scholar 

  107. Buchan A, Pulsinelli WA. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci. 1990;10(1):311–6.

    CAS  PubMed  Google Scholar 

  108. Buchan AM, Slivka A, Xue D. The effect of the NMDA receptor antagonist MK-801 on cerebral blood flow and infarct volume in experimental focal stroke. Brain Res. 1992;574(1-2):171–7.

    Article  CAS  PubMed  Google Scholar 

  109. Nikić I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med. 2011;17(4):495–9. doi:10.1038/nm.2324. Epub 2011 Mar 27.

    Article  PubMed  CAS  Google Scholar 

  110. Bragin DE, Zhou B, Ramamoorthy P, Müller WS, Connor JA, Shi H. Differential changes of glutathione levels in astrocytes and neurons in ischemic brains by two-photon imaging. J Cereb Blood Flow Metab. 2010;30(4):734–8. doi:10.1038/jcbfm.2010.9. Epub 2010 Jan 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bath PM, Macleod MR, Green AR. Emulating multicentre clinical stroke trials: a new paradigm for studying novel interventions in experimental models of stroke. Int J Stroke. 2009;4(6):471–9. doi:10.1111/j.1747-4949.2009.00386.x.

    Article  CAS  PubMed  Google Scholar 

  112. Macleod MR, Fisher M, O'Collins V, Sena ES, Dirnagl U, Bath PM, et al. Good laboratory practice: preventing introduction of bias at the bench. Stroke. 2009;40(3):e50–2. doi:10.1161/STROKEAHA.108.525386. Epub 2008 Aug 14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair M. Buchan F.Med.Sci. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hadley, G., Neuhaus, A.A., Buchan, A.M. (2017). Therapeutic Strategies Harnessing Oxidative Stress to Treat Stroke. In: Rodriguez-Porcel, M., Chade, A., Miller, J. (eds) Studies on Atherosclerosis. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7693-2_7

Download citation

Publish with us

Policies and ethics