Skip to main content

Reactive Oxygen Species and the Regulation of Cerebral Vascular Tone

  • Chapter
  • First Online:
Studies on Atherosclerosis

Abstract

This chapter summarizes concepts related to the effects of reactive oxygen species and oxidative stress on vascular tone in the cerebral circulation. The impact of different reactive oxygen species as well as enzymatic sources of these molecules (particularly NADPH oxidase) is outlined along with endogenous mechanisms that protect against oxidative stress. Direct effects of reactive oxygen species on vascular tone are described. In addition, an overview is presented regarding effects of these molecules on key adaptive responses. The majority of this work has been performed in models of disease. Although reactive oxygen species may be produced at low levels in normal healthy blood vessels, they appear to exert little influence on vascular tone under those conditions. For both endothelium-dependent vasodilation and neurovascular coupling, reactive oxygen species do not affect responses normally but have substantial effects in disease and with aging. In contrast, the importance of reactive oxygen species in relation to autoregulation and chemoregulation (cerebrovascular responses to carbon dioxide and oxygen) has only been studied to a limited extent with somewhat inconsistent results. Overall, reactive oxygen species have substantial effects on vascular tone in brain, particularly in models of cerebrovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol. 2004;24:1367–73.

    Article  CAS  PubMed  Google Scholar 

  2. Faraci FM. Protecting against vascular disease in brain. Am J Physiol. 2011;300:H1566–82.

    CAS  Google Scholar 

  3. Miller AA, Drummond GR, Schmidt HH, Sobey CG. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res. 2005;97:1055–62.

    Article  CAS  PubMed  Google Scholar 

  4. Miller AA, Drummond GR, De Silva TM, Mast AE, Hickey H, Williams JP, et al. NADPH oxidase activity is higher in cerebral versus systemic arteries of four animal species: role of Nox2. Am J Physiol. 2009;296:H220–5.

    CAS  Google Scholar 

  5. Chan SL, Baumbach GL. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles. Front Physiol. 2013;4:133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan SL, Baumbach GL. Nox2 deficiency prevents hypertension-induced vascular dysfunction and hypertrophy in cerebral arterioles. Int J Hypertens. 2013;2013:793630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Baumbach GL, Didion SP, Faraci FM. Hypertrophy of cerebral arterioles in mice deficient in expression of the gene for CuZn superoxide dismutase. Stroke. 2006;37:1850–5.

    Article  CAS  PubMed  Google Scholar 

  8. Starke RM, Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, et al. The role of oxidative stress in cerebral aneurysm formation and rupture. Curr Neurovasc Res. 2013;10:247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wood KC, Hebbel RP, Granger DN. Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice. FASEB J. 2005;19:989–91.

    CAS  PubMed  Google Scholar 

  10. Freeman LR, Keller JN. Oxidative stress and cerebral endothelial cells: regulation of the blood-brain-barrier and antioxidant based interventions. Biochim Biophys Acta. 1822;2012:822–9.

    Google Scholar 

  11. Drummond GR, Sobey CG. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endo Metab. 2014;25:452–63.

    Article  CAS  Google Scholar 

  12. Leopold JA, Loscalzo J. Oxidative risk for atherothrombotic cardiovascular disease. Free Radic Biol Med. 2009;47:1673–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1977;1:409–17.

    Article  CAS  PubMed  Google Scholar 

  14. Busija DW, Katakam PV. Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning. J Vasc Res. 2014;51:175–89.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Didion S, Hathaway C, Faraci F. Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. Am J Physiol. 2001;281:H1697–703.

    CAS  Google Scholar 

  16. Kontos HA, Wei EP, Kukreja RC, Ellis EF, Hess ML. Differences in endothelium-dependent cerebral dilation by bradykinin and acetylcholine. Am J Physiol. 1990;258:H1261–6.

    CAS  PubMed  Google Scholar 

  17. Kontos HA, Wei EP, Povlishock JT, Christman CW. Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats. Circ Res. 1984;55:295–303.

    Article  CAS  PubMed  Google Scholar 

  18. Chrissobolis S, Banfi B, Sobey CG, Faraci FM. Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. J Appl Physiol. 2012;113:184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chrissobolis S, Faraci FM. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med. 2008;14:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Montezano AC, Burger D, Ceravolo GS, Yusuf H, Montero M, Touyz RM. Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5. Clin Sci. 2011;120:131–41.

    Article  CAS  PubMed  Google Scholar 

  21. Santhanam AV, d'Uscio LV, Katusic ZS. Erythropoietin increases bioavailability of tetrahydrobiopterin and protects cerebral microvasculature against oxidative stress induced by eNOS uncoupling. J Neurochem. 2014;131:521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santhanam AV, d'Uscio LV, Smith LA, Katusic ZS. Uncoupling of eNOS causes superoxide anion production and impairs NO signaling in the cerebral microvessels of hph-1 mice. J Neurochem. 2012;122:1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei EP, Kontos HA, Beckman JS. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol. 1996;271:H1262–6.

    CAS  PubMed  Google Scholar 

  24. Didion SP, Faraci FM. Effects of NADH and NADPH on superoxide levels and cerebral vascular tone. Am J Physiol. 2002;282:H688–95.

    CAS  Google Scholar 

  25. Park L, Anrather J, Zhou P, Frys K, Wang G, Iadecola C. Exogenous NADPH increases cerebral blood flow through NADPH oxidase-dependent and -independent mechanisms. Arterioscler Thromb Vasc Biol. 2004;24:1860–5.

    Article  CAS  PubMed  Google Scholar 

  26. Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther. 2006;111:928–48.

    Article  CAS  PubMed  Google Scholar 

  27. Cosentino F, Sill JC, Katusic ZS. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension. 1994;23:229–35.

    Article  CAS  PubMed  Google Scholar 

  28. Amberg GC, Earley S, Glapa SA. Local regulation of arterial L-type calcium channels by reactive oxygen species. Circ Res. 2010;107:1002–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faraci FM. Reactive oxygen species: influence on cerebral vascular tone. J Appl Physiol. 2006;100:739–43.

    Article  CAS  PubMed  Google Scholar 

  30. Sobey CG, Heistad DD, Faraci FM. Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke. 1997;28:2290–4.

    Article  CAS  PubMed  Google Scholar 

  31. Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78:53–97.

    CAS  PubMed  Google Scholar 

  32. Faraci FM, Sobey CG. Role of potassium channels in regulation of cerebral vascular tone. J Cereb blood Flow Metabl. 1998;18:1047–63.

    Article  CAS  Google Scholar 

  33. Faraci FM. Hydrogen peroxide: watery fuel for change in vascular biology. Arterioscler Thromb Vasc Biol. 2006;26:1931–3.

    Article  CAS  PubMed  Google Scholar 

  34. Brzezinska AK, Gebremedhin D, Chilian WM, Kalyanaraman B, Elliott SJ. Peroxynitrite reversibly inhibits Ca2+-activated K+ channels in rat cerebral artery smooth muscle cells. Am J Physiol. 2000;278:H1883–90.

    CAS  Google Scholar 

  35. Elliott SJ, Lacey DJ, Chilian WM, Brzezinska AK. Peroxynitrite is a contractile agonist of cerebral artery smooth muscle cells. Am J Physiol. 1998;275:H1585–91.

    CAS  PubMed  Google Scholar 

  36. Girouard H, Park L, Anrather J, Zhou P, Iadecola C. Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II. Arterioscler Thromb Vasc Biol. 2007;27:303–9.

    Article  CAS  PubMed  Google Scholar 

  37. Maneen MJ, Cipolla MJ. Peroxynitrite diminishes myogenic tone in cerebral arteries: role of nitrotyrosine and F-actin. Am J Physiol. 2007;292:H1042–50.

    CAS  Google Scholar 

  38. Modrick ML, Didion SP, Sigmund CD, Faraci FM. Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. Am J Physiol. 2009;296:H1914–9.

    CAS  Google Scholar 

  39. Didion SP, Kinzenbaw DA, Schrader LI, Faraci FM. Heterozygous CuZn superoxide dismutase deficiency produces a vascular phenotype with aging. Hypertension. 2006;48:1072–9.

    Article  CAS  PubMed  Google Scholar 

  40. Park L, Wang G, Moore J, Girouard H, Zhou P, Anrather J, et al. The key role of transient receptor potential melastatin-2 channels in amyloid-beta-induced neurovascular dysfunction. Nat Comm. 2014;5:5318.

    Article  CAS  Google Scholar 

  41. Bauer J, Ripperger A, Frantz S, Ergun S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol. 2014;171:3115–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katusic ZS, Austin SA. Endothelial nitric oxide: protector of a healthy mind. Eur Heart J. 2014;35:888–94.

    Article  CAS  PubMed  Google Scholar 

  43. Green DJ, Dawson EA, Groenewoud HM, Jones H, Thijssen DH. Is flow-mediated dilation nitric oxide mediated? A meta-analysis. Hypertension. 2014;63:376–82.

    Article  CAS  PubMed  Google Scholar 

  44. Lind L, Berglund L, Larsson A, Sundstrom J. Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation. 2011;123:1545–51.

    Article  PubMed  Google Scholar 

  45. Flammer AJ, Luscher TF. Three decades of endothelium research: from the detection of nitric oxide to the everyday implementation of endothelial function measurements in cardiovascular diseases. Swiss Med Wkly. 2010;140:w13122.

    PubMed  Google Scholar 

  46. Volpe M, Iaccarino G, Vecchione C, Rizzoni D, Russo R, Rubattu S, et al. Association and cosegregation of stroke with impaired endothelium-dependent vasorelaxation in stroke prone, spontaneously hypertensive rats. J Clin Invest. 1996;98:256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology. 2014;29:343–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kamouchi M, Ago T, Kitazono T. Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol. 2011;31:175–93.

    Article  PubMed  Google Scholar 

  49. Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215.

    Article  CAS  PubMed  Google Scholar 

  50. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. De Silva TM, Modrick ML, Ketsawatsomkron P, Lynch C, Chu Y, Pelham CJ, et al. Role of peroxisome proliferator-activated receptor-gamma in vascular muscle in the cerebral circulation. Hypertension. 2014;64:1088–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62:525–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sobey CG, Faraci FM. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles. Stroke. 1997;28:837–42.

    Article  CAS  PubMed  Google Scholar 

  54. Katakam PV, Domoki F, Lenti L, Gaspar T, Institoris A, Snipes JA, et al. Cerebrovascular responses to insulin in rats. J Cereb Blood Flow Metab. 2009;29:1955–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chrissobolis S, Drummond GR, Faraci FM, Sobey CG. Chronic aldosterone administration causes Nox2-mediated increases in reactive oxygen species production and endothelial dysfunction in the cerebral circulation. J Hypertens. 2014;32:1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Silva TM, Brait VH, Drummond GR, Sobey CG, Miller AA. Nox2 oxidase activity accounts for the oxidative stress and vasomotor dysfunction in mouse cerebral arteries following ischemic stroke. PLoS One. 2011;6, e28393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Girouard H, Park L, Anrather J, Zhou P, Iadecola C. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through Nox-2-derived radicals. Arterioscler Thromb Vasc Biol. 2006;26:826–32.

    Article  CAS  PubMed  Google Scholar 

  58. Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, et al. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res. 2004;95:1019–26.

    Article  CAS  PubMed  Google Scholar 

  59. Lynch CM, Kinzenbaw DA, Chen X, Zhan S, Mezzetti E, Filosa J, et al. Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke. 2013;44:3195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Park L, Anrather J, Girouard H, Zhou P, Iadecola C. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab. 2007;27:1908–18.

    Article  CAS  PubMed  Google Scholar 

  61. Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S, et al. NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J Neurosci. 2005;25:1769–77.

    Article  CAS  PubMed  Google Scholar 

  62. Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci. 2008;105:1347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walker AE, Henson GD, Reihl KD, Nielson EI, Morgan RG, Lesniewski LA, et al. Beneficial effects of lifelong caloric restriction on endothelial function are greater in conduit arteries compared to cerebral resistance arteries. Age. 2014;36:559–69.

    Article  CAS  PubMed  Google Scholar 

  64. Nicolakakis N, Aboulkassim T, Ongali B, Lecrux C, Fernandes P, Rosa-Neto P, et al. Complete rescue of cerebrovascular function in aged Alzheimer's disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J Neurosci. 2008;28:9287–96.

    Article  CAS  PubMed  Google Scholar 

  65. Tong XK, Lecrux C, Rosa-Neto P, Hamel E. Age-dependent rescue by simvastatin of Alzheimer's disease cerebrovascular and memory deficits. J Neurosci. 2012;32:4705–15.

    Article  CAS  PubMed  Google Scholar 

  66. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12:483–97.

    Article  PubMed  Google Scholar 

  67. Chan SL, Sweet JG, Cipolla MJ. Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension. FASEB J. 2013;27:3917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cipolla MJ, Bullinger LV. Reactivity of brain parenchymal arterioles after ischemia and reperfusion. Microcirculation. 2008;15:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakahata K, Kinoshita H, Azma T, Matsuda N, Hama-Tomioka K, Haba M, et al. Propofol restores brain microvascular function impaired by high glucose via the decrease in oxidative stress. Anesthesiology. 2008;108:269–75.

    Article  CAS  PubMed  Google Scholar 

  70. Gauthier KM, Campbell WB, McNeish AJ. Regulation of KCa2.3 and endothelium-dependent hyperpolarization (EDH) in the rat middle cerebral artery: the role of lipoxygenase metabolites and isoprostanes. Peer J. 2014;2:414.

    Google Scholar 

  71. Mayhan WG. Role of prostaglandin H2-thromboxane A2 in responses of cerebral arterioles during chronic hypertension. Am J Physiol. 1992;262:H539–43.

    CAS  PubMed  Google Scholar 

  72. Mayhan WG, Faraci FM, Heistad DD. Responses of cerebral arterioles to adenosine 5′-diphosphate, serotonin, and the thromboxane analogue U-46619 during chronic hypertension. Hypertension. 1988;12:556–61.

    Article  CAS  PubMed  Google Scholar 

  73. Mayhan WG, Simmons LK, Sharpe GM. Mechanism of impaired responses of cerebral arterioles during diabetes mellitus. Am J Physiol. 1991;260:H319–26.

    CAS  PubMed  Google Scholar 

  74. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone Jr MA, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995;96:60–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shimokawa H, Satoh K. Light and dark of reactive oxygen species for vascular function. J Cardiovasc Pharmacol. 2015;65:412–8.

    Google Scholar 

  76. Dong M, Yan BP, Liao JK, Lam YY, Yip GW, Yu CM. Rho-kinase inhibition: a novel therapeutic target for the treatment of cardiovascular diseases. Drug Disc Today. 2010;15:622–9.

    Article  CAS  Google Scholar 

  77. Sawada N, Liao JK. Rho/Rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis. Antioxid Redox Signal. 2014;20:1251–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Didion SP, Lynch CM, Baumbach GL, Faraci FM. Impaired endothelium-dependent responses and enhanced influence of Rho-kinase in cerebral arterioles in type II diabetes. Stroke. 2005;36:342–7.

    Article  CAS  PubMed  Google Scholar 

  79. Iadecola C, Zhang F, Niwa K, Eckman C, Turner SK, Fischer E, et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci. 1999;2:157–61.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang L, Papadopoulos P, Hamel E. Endothelial TRPV4 channels mediate dilation of cerebral arteries: impairment and recovery in cerebrovascular pathologies related to Alzheimer's disease. Br J Pharmacol. 2013;170:661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Faraci F. Cerebral vascular dysfunction with aging. In: Masoro EJ, Austad S, editors. Handbook of the biology of aging. 7th ed. New York, NY: Academic; 2011. p. 405–18.

    Chapter  Google Scholar 

  82. Katusic ZS, Marshall JJ, Kontos HA, Vanhoutte PM. Similar responsiveness of smooth muscle of the canine basilar artery to EDRF and nitric oxide. Am J Physiol. 1989;257:H1235–9.

    CAS  PubMed  Google Scholar 

  83. Kontos HA, Wei EP, Marshall JJ. In vivo bioassay of endothelium-derived relaxing factor. Am J Physiol. 1988;255:H1259–62.

    CAS  PubMed  Google Scholar 

  84. Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA. Oxygen radicals in cerebral ischemia. Am J Physiol. 1992;263:H1356–62.

    CAS  PubMed  Google Scholar 

  85. Modrick ML, Didion SP, Lynch CM, Dayal S, Lentz SR, Faraci FM. Role of hydrogen peroxide and the impact of glutathione peroxidase-1 in regulation of cerebral vascular tone. J Cereb Blood Flow Metab. 2009;29:1130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bryan Jr RM, You J, Golding EM, Marrelli SP. Endothelium-derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin. Anesthesiology. 2005;102:1261–77.

    Article  CAS  PubMed  Google Scholar 

  87. Dunn KM, Nelson MT. Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol. 2014;306:H1–14.

    Article  CAS  Google Scholar 

  88. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–66.

    Article  CAS  PubMed  Google Scholar 

  89. Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc. 2014;3:e000787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Faraci FM, Heistad DD. Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res. 1990;66:8–17.

    Article  CAS  PubMed  Google Scholar 

  91. Fujii K, Heistad DD, Faraci FM. Flow-mediated dilatation of the basilar artery in vivo. Circ Res. 1991;69:697–705.

    Article  CAS  PubMed  Google Scholar 

  92. Joutel A, Faraci FM. Cerebral small vessel disease: insights and opportunities from mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2014;45:1215–21.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vetri F, Xu H, Paisansathan C, Pelligrino DA. Impairment of neurovascular coupling in type 1 diabetes mellitus in rats is linked to PKC modulation of BKCa and Kir channels. Am J Physiol. 2012;302:H1274–84.

    CAS  Google Scholar 

  94. Kazama K, Wang G, Frys K, Anrather J, Iadecola C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol. 2003;285:H1890–9.

    CAS  Google Scholar 

  95. Jackman K, Iadecola C. Neurovascular regulation in the ischemic brain. Antioxid Redox Signal. 2015;22:149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Park L, Koizumi K, El Jamal S, Zhou P, Previti ML, Van Nostrand WE, et al. Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke. 2014;45:1815–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dabertrand F, Hannah RM, Pearson JM, Hill-Eubanks DC, Brayden JE, Nelson MT. Prostaglandin E2, a postulated astrocyte-derived neurovascular coupling agent, constricts rather than dilates parenchymal arterioles. J Cereb Blood Flow Metab. 2013;33:479–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shi Y, Liu X, Gebremedhin D, Falck JR, Harder DR, Koehler RC. Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex. J Cereb Blood Flow Metab. 2008;28:111–25.

    Article  CAS  PubMed  Google Scholar 

  99. Gebremedhin D, Weinberger B, Lourim D, Harder DR. Adenosine can mediate its actions through generation of reactive oxygen species. J Cereb Blood Flow Metab. 2010;30:1777–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brian Jr JE. Carbon dioxide and the cerebral circulation. Anesthesiology. 1998;88:1365–86.

    Article  PubMed  Google Scholar 

  101. Kontos HA, Wei EP, Raper AJ, Patterson Jr JL. Local mechanism of CO2 action of cat pial arterioles. Stroke. 1977;8:226–9.

    Article  CAS  PubMed  Google Scholar 

  102. Niwa K, Haensel C, Ross ME, Iadecola C. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res. 2001;88:600–8.

    Article  CAS  PubMed  Google Scholar 

  103. Leffler CW, Mirro R, Thompson C, Shibata M, Armstead WM, Pourcyrous M, et al. Activated oxygen species do not mediate hypercapnia-induced cerebral vasodilation in newborn pigs. Am J Physiol. 1991;261:H335–42.

    CAS  PubMed  Google Scholar 

  104. Zhang F, Slungaard A, Vercellotti GM, Iadecola C. Superoxide-dependent cerebrovascular effects of homocysteine. Am J Physiol. 1998;274:R1704–11.

    CAS  PubMed  Google Scholar 

  105. Niwa K, Carlson GA, Iadecola C. Exogenous A beta1-40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J Cereb Blood Flow Metab. 2000;20:1659–68.

    Article  CAS  PubMed  Google Scholar 

  106. Cipolla MJ. The cerebral circulation. Integrated systems physiology: from molecule to function. San Rafael, CA: Morgan & Claypool Life Sciences; 2009. p. 1–59.

    Google Scholar 

  107. Faraci FM, Baumbach GL, Heistad DD. Myogenic mechanisms in the cerebral circulation. J Hypertens. 1989;7:S61–4.

    CAS  Google Scholar 

  108. Kontos HA, Wei EP, Dietrich WD, Navari RM, Povlishock JT, Ghatak NR, et al. Mechanism of cerebral arteriolar abnormalities after acute hypertension. Am J Physiol. 1981;240:H511–27.

    CAS  PubMed  Google Scholar 

  109. Wei EP, Kontos HA, Dietrich WD, Povlishock JT, Ellis EF. Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Circ Res. 1981;48:95–103.

    Article  CAS  PubMed  Google Scholar 

  110. Gebremedhin D, Terashvili M, Wickramasekera N, Zhang DX, Rau N, Miura H, et al. Redox signaling via oxidative inactivation of PTEN modulates pressure-dependent myogenic tone in rat middle cerebral arteries. PLoS One. 2013;8, e68498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lim M, Choi SK, Cho YE, Yeon SI, Kim EC, Ahn DS, et al. The role of sphingosine kinase 1/sphingosine-1-phosphate pathway in the myogenic tone of posterior cerebral arteries. PLoS One. 2012;7, e35177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Butcher JT, Goodwill AG, Stanley SC, Frisbee JC. Differential impact of dilator stimuli on increased myogenic activation of cerebral and skeletal muscle resistance arterioles in obese zucker rats. Microcirculation. 2013;20:579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Phillips SA, Sylvester FA, Frisbee JC. Oxidant stress and constrictor reactivity impair cerebral artery dilation in obese Zucker rats. Am J Physiol. 2005;288:R522–30.

    CAS  Google Scholar 

  114. Didion SP, Ryan MJ, Didion LA, Fegan PE, Sigmund CD, Faraci FM. Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res. 2002;91:938–44.

    Article  CAS  PubMed  Google Scholar 

  115. Faraci FM, Modrick ML, Lynch CM, Didion LA, Fegan PE, Didion SP. Selective cerebral vascular dysfunction in Mn-SOD-deficient mice. J Appl Physiol. 2006;100:2089–93.

    Article  CAS  PubMed  Google Scholar 

  116. Kitayama J, Yi C, Faraci FM, Heistad DD. Modulation of dilator responses of cerebral arterioles by extracellular superoxide dismutase. Stroke. 2006;37:2802–6.

    Article  PubMed  Google Scholar 

  117. Brown KA, Didion SP, Andresen JJ, Faraci FM. Effect of aging, MnSOD deficiency, and genetic background on endothelial function: evidence for MnSOD haploinsufficiency. Arterioscler Thromb Vasc Biol. 2007;27:1941–6.

    Article  CAS  PubMed  Google Scholar 

  118. Chrissobolis S, Faraci FM. Sex differences in protection against angiotensin II-induced endothelial dysfunction by manganese superoxide dismutase in the cerebral circulation. Hypertension. 2010;55:905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Didion SP, Kinzenbaw DA, Faraci FM. Critical role for CuZn-superoxide dismutase in preventing angiotensin II-induced endothelial dysfunction. Hypertension. 2005;46:1147–53.

    Article  CAS  PubMed  Google Scholar 

  120. Chrissobolis S, Didion SP, Kinzenbaw DA, Schrader LI, Dayal S, Lentz SR, et al. Glutathione peroxidase-1 plays a major role in protecting against angiotensin II-induced vascular dysfunction. Hypertension. 2008;51:872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ketsawatsomkron P, Pelham CJ, Groh S, Keen HL, Faraci FM, Sigmund CD. Does peroxisome proliferator-activated receptor-gamma protect from hypertension directly through effects in the vasculature? J Biol Chem. 2010;285:9311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marchesi C, Schiffrin EL. Peroxisome proliferator-activated receptors and the vascular system: beyond their metabolic effects. J Am Soc Hypertens. 2008;2:227–38.

    Article  PubMed  Google Scholar 

  123. Plutzky J. The PPAR-RXR transcriptional complex in the vasculature: energy in the balance. Circ Res. 2011;108:1002–16.

    Article  CAS  PubMed  Google Scholar 

  124. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298:1180–8.

    Article  CAS  PubMed  Google Scholar 

  125. Ryan MJ, Didion SP, Mathur S, Faraci FM, Sigmund CD. PPAR gamma agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension. 2004;43:661–6.

    Article  CAS  PubMed  Google Scholar 

  126. Cipolla MJ, Bishop N, Vinke RS, Godfrey JA. PPAR gamma activation prevents hypertensive remodeling of cerebral arteries and improves vascular function in female rats. Stroke. 2010;41:1266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, et al. Dominant negative mutations in human PPAR gamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402:880–3.

    CAS  PubMed  Google Scholar 

  128. Keen HL, Halabi CM, Beyer AM, de Lange WJ, Liu X, Maeda N, et al. Bioinformatic analysis of gene sets regulated by ligand-activated and dominant-negative peroxisome proliferator-activated receptor gamma in mouse aorta. Arterioscler Thromb Vasc Biol. 2010;30:518–25.

    Article  CAS  PubMed  Google Scholar 

  129. Beyer AM, Baumbach GL, Halabi CM, Modrick ML, Lynch CM, Gerhold TD, et al. Interference with PPAR gamma signaling causes cerebral vascular dysfunction, hypertrophy, and remodeling. Hypertension. 2008;51:867–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Beyer AM, de Lange WJ, Halabi CM, Modrick ML, Keen HL, Faraci FM, et al. Endothelium-specific interference with peroxisome proliferator activated receptor gamma causes cerebral vascular dysfunction in response to a high-fat diet. Circ Res. 2008;103:654–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lyle AN, Griendling KK. Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology. 2006;21:269–80.

    Article  CAS  PubMed  Google Scholar 

  132. Reckelhoff JF, Romero JC. Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol. 2003;284:R893–912.

    CAS  Google Scholar 

  133. Balakumar P, Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: a T receptor signaling cascades in cardiovascular physiopathology. Cell Signal. 2014;26:2147–60.

    Article  CAS  PubMed  Google Scholar 

  134. Santos RA. Angiotensin-(1–7). Hypertension. 2014;63:1138–47.

    Article  CAS  PubMed  Google Scholar 

  135. Pena Silva RA, Chu Y, Miller JD, Mitchell IJ, Penninger JM, Faraci FM, et al. Impact of ACE2 deficiency and oxidative stress on cerebrovascular function with aging. Stroke. 2012;43:3358–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Higashi Y, Maruhashi T, Noma K, Kihara Y. Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications. Trends Cardiovasc Med. 2014;24:165–9.

    Article  CAS  PubMed  Google Scholar 

  137. Rodriguez-Manas L, El-Assar M, Vallejo S, Lopez-Doriga P, Solis J, Petidier R, et al. Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell. 2009;8:226–38.

    Article  CAS  PubMed  Google Scholar 

  138. Wray DW, Nishiyama SK, Harris RA, Zhao J, McDaniel J, Fjeldstad AS, et al. Acute reversal of endothelial dysfunction in the elderly after antioxidant consumption. Hypertension. 2012;59:818–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Heart Protection Study Collaborative G. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:23–33.

    Article  Google Scholar 

  140. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, et al. Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci. 2001;98:14096–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sullivan MN, Earley S. TRP channel Ca2+ sparklets: fundamental signals underlying endothelium-dependent hyperpolarization. Am J Physiol. 2013;305:C999–1008.

    Article  CAS  Google Scholar 

  142. Ngai AC, Winn HR. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ Res. 1995;77:832–40.

    Article  CAS  PubMed  Google Scholar 

  143. Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, et al. NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke. 2005;36:1040–6.

    Article  CAS  PubMed  Google Scholar 

  144. Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG. Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke. 2004;35:584–9.

    Article  CAS  PubMed  Google Scholar 

  145. Fang Q, Sun H, Arrick DM, Mayhan WG. Inhibition of NADPH oxidase improves impaired reactivity of pial arterioles during chronic exposure to nicotine. J Appl Physiol. 2006;100:631–6.

    Article  CAS  PubMed  Google Scholar 

  146. Mayhan WG, Arrick DM, Sharpe GM, Patel KP, Sun H. Inhibition of NAD(P)H oxidase alleviates impaired NOS-dependent responses of pial arterioles in type 1 diabetes mellitus. Microcirculation. 2006;13:567–75.

    Article  CAS  PubMed  Google Scholar 

  147. Miller AA, Drummond GR, Mast AE, Schmidt HH, Sobey CG. Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: role of estrogen. Stroke. 2007;38:2142–9.

    Article  CAS  PubMed  Google Scholar 

  148. De Silva TM, Broughton BR, Drummond GR, Sobey CG, Miller AA. Gender influences cerebral vascular responses to angiotensin II through Nox2-derived reactive oxygen species. Stroke. 2009;40:1091–7.

    Article  PubMed  CAS  Google Scholar 

  149. Miller AA, De Silva TM, Judkins CP, Diep H, Drummond GR, Sobey CG. Augmented superoxide production by Nox2-containing NADPH oxidase causes cerebral artery dysfunction during hypercholesterolemia. Stroke. 2010;41:784–9.

    Article  CAS  PubMed  Google Scholar 

  150. Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 2010;8.

    Google Scholar 

  151. Akopov SE, Grigorian MR, Gabrielian ES. The endothelium-dependent relaxation of human middle cerebral artery: effects of activated neutrophils. Experientia. 1992;48:34–6.

    Article  CAS  PubMed  Google Scholar 

  152. Wei EP, Kontos HA, Christman CW, DeWitt DS, Povlishock JT. Superoxide generation and reversal of acetylcholine-induced cerebral arteriolar dilation after acute hypertension. Circ Res. 1985;57:781–7.

    Article  CAS  PubMed  Google Scholar 

  153. Mayhan WG, Arrick DM, Sharpe GM, Sun H. Age-related alterations in reactivity of cerebral arterioles: role of oxidative stress. Microcirculation. 2008;15:225–36.

    Article  CAS  PubMed  Google Scholar 

  154. Sun H, Mayhan WG. Temporal effect of alcohol consumption on reactivity of pial arterioles: role of oxygen radicals. Am J Physiol. 2001;280:H992–1001.

    CAS  Google Scholar 

  155. Sun H, Zheng H, Molacek E, Fang Q, Patel KP, Mayhan WG. Role of NAD(P)H oxidase in alcohol-induced impairment of endothelial nitric oxide synthase-dependent dilation of cerebral arterioles. Stroke. 2006;37:495–500.

    Article  CAS  PubMed  Google Scholar 

  156. Sun H, Mayhan WG. Superoxide dismutase ameliorates impaired nitric oxide synthase-dependent dilatation of the basilar artery during chronic alcohol consumption. Brain Res. 2001;891:116–22.

    Article  CAS  PubMed  Google Scholar 

  157. Tong XK, Nicolakakis N, Kocharyan A, Hamel E. Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer's disease. J Neurosci. 2005;25:11165–74.

    Article  CAS  PubMed  Google Scholar 

  158. Capone C, Faraco G, Anrather J, Zhou P, Iadecola C. Cyclooxygenase 1-derived prostaglandin E2 and EP1 receptors are required for the cerebrovascular dysfunction induced by angiotensin II. Hypertension. 2010;55:911–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Capone C, Faraco G, Park L, Cao X, Davisson RL, Iadecola C. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin-II precedes the development of hypertension. Am J Physiol. 2011;300:H397–407.

    Article  CAS  Google Scholar 

  160. Johnson AW, Kinzenbaw DA, Modrick ML, Faraci FM. Small-molecule inhibitors of signal transducer and activator of transcription 3 protect against angiotensin II-induced vascular dysfunction and hypertension. Hypertension. 2013;61:437–42.

    Article  CAS  PubMed  Google Scholar 

  161. Faraci FM, Lamping KG, Modrick ML, Ryan MJ, Sigmund CD, Didion SP. Cerebral vascular effects of angiotensin II: new insights from genetic models. J Cereb Blood Flow Metab. 2006;26:449–55.

    Article  CAS  PubMed  Google Scholar 

  162. Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, et al. Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation. 2015;131(3):289–99.

    Article  CAS  PubMed  Google Scholar 

  163. Faraco G, Wijasa TS, Park L, Moore J, Anrather J, Iadecola C. Water deprivation induces neurovascular and cognitive dysfunction through vasopressin-induced oxidative stress. J Cereb Blood Flow Metab. 2014;34:852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mayhan WG. Superoxide dismutase partially restores impaired dilatation of the basilar artery during diabetes mellitus. Brain Res. 1997;760:204–9.

    Article  CAS  PubMed  Google Scholar 

  165. Didion SP, Lynch CM, Faraci FM. Cerebral vascular dysfunction in TallyHo mice: a new model of type II diabetes. Am J Physiol. 2007;292:H1579–83.

    CAS  Google Scholar 

  166. Matsumoto T, Kobayashi T, Wachi H, Seyama Y, Kamata K. Vascular NAD(P)H oxidase mediates endothelial dysfunction in basilar arteries from Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Atherosclerosis. 2007;192:15–24.

    Article  CAS  PubMed  Google Scholar 

  167. Erdos B, Snipes JA, Miller AW, Busija DW. Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes. 2004;53:1352–9.

    Article  PubMed  Google Scholar 

  168. De Silva TM, Lynch CM, Grobe JL, Faraci FM. Activation of the central renin angiotensin system (RAS) causes selective cerebrovascular dysfunction (Abstract). FASEB J. 2015;29:646–4.

    Google Scholar 

  169. Kontos HA, Wei EP. Endothelium-dependent responses after experimental brain injury. J Neurotrauma. 1992;9:349–54.

    Article  CAS  PubMed  Google Scholar 

  170. Kitayama J, Faraci FM, Lentz SR, Heistad DD. Cerebral vascular dysfunction during hypercholesterolemia. Stroke. 2007;38:2136–41.

    Article  CAS  PubMed  Google Scholar 

  171. Dayal S, Arning E, Bottiglieri T, Boger RH, Sigmund CD, Faraci FM, et al. Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke. 2004;35:1957–62.

    Article  CAS  PubMed  Google Scholar 

  172. Xie H, Ray PE, Short BL. NF-kappaB activation plays a role in superoxide-mediated cerebral endothelial dysfunction after hypoxia/reoxygenation. Stroke. 2005;36:1047–52.

    Article  CAS  PubMed  Google Scholar 

  173. Capone C, Faraco G, Coleman C, Young CN, Pickel VM, Anrather J, et al. Endothelin 1-dependent neurovascular dysfunction in chronic intermittent hypoxia. Hypertension. 2012;60:106–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, et al. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci. 2007;27:7083–93.

    Article  CAS  PubMed  Google Scholar 

  175. Hernanz R, Briones AM, Alonso MJ, Vila E, Salaices M. Hypertension alters role of iNOS, COX-2, and oxidative stress in bradykinin relaxation impairment after LPS in rat cerebral arteries. Am J Physiol. 2004;287:H225–34.

    CAS  Google Scholar 

  176. Mayhan WG, Arrick DM, Sharpe GM, Sun H. Nitric oxide synthase-dependent responses of the basilar artery during acute infusion of nicotine. Nicotine Tob Res. 2009;11:270–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang R, Bai YG, Lin LJ, Bao JX, Zhang YY, Tang H, et al. Blockade of AT1 receptor partially restores vasoreactivity, NOS expression, and superoxide levels in cerebral and carotid arteries of hindlimb unweighting rats. J Appl Physiol. 2009;106:251–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Work summarized in this chapter was supported by research grants from the National Institute of Health (NS-096465, NS-24621, HL-62984, and HL-113863), the Department of Veteran’s Affair’s (BX001399), and the Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Cerebral Small Vessel Disease). TMD was the recipient of an Overseas Post-doctoral Fellowship from the National Health and Medical Research Council of Australia (1053786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Faraci Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Silva, T.M., Faraci, F.M. (2017). Reactive Oxygen Species and the Regulation of Cerebral Vascular Tone. In: Rodriguez-Porcel, M., Chade, A., Miller, J. (eds) Studies on Atherosclerosis. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7693-2_6

Download citation

Publish with us

Policies and ethics