Skip to main content

Oxidative Stress and Central Regulation of Blood Pressure

  • Chapter
  • First Online:

Abstract

It is well established that oxidative stress is involved in the pathogenesis of hypertension. With regard to oxidative stress, however, much attention has been focused on vascular damage in the process of hypertension. In consecutive studies, we have been investigating the role of brain oxidative stress in the central nervous system control of blood pressure. Indeed, we found that oxidative stress is increased in the brain stem, thereby activating the sympathetic nervous system, leading to hypertension. In this chapter, we describe our series of consecutive studies regarding this issue and supporting reports from other laboratories. Because of the importance of sympathetic activation for hypertensive vascular damage, our concepts not only of the pathogenesis but also the therapeutic aspects of hypertension are worthy of attention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Araki S, Hirooka Y, Kishi T, Yasukawa K, Utsumi H, Sunagawa K. Olmesartan reduces oxidative stress in the brain of stroke-prone spontaneously hypertensive rats assessed by an in vivo ESR method. Hypertens Res. 2009;32:1091–6.

    Article  CAS  PubMed  Google Scholar 

  2. Chan SHH, Chan JYH. Brain stem oxidative stress and its associated signaling in the regulation of sympathetic vasomotor tone. J Appl Physiol. 2012;113:1921–8.

    Article  CAS  PubMed  Google Scholar 

  3. Chan SHH, Chan JYH. Brain stem NOS and ROS in neural mechanisms of hypertension. Antioxid Redox Signal. 2014;20:146–63.

    Article  CAS  PubMed  Google Scholar 

  4. Francis J, Davisson RL. Emerging concepts in hypertension. Antioxid Redox Signal. 2014;20:69–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fujita M, Fujita T. The role of CNS in salt-sensitive hypertension. Curr Hypertens Rep. 2013;15:390–4.

    Article  CAS  PubMed  Google Scholar 

  6. Gabor A, Leenen FHH. Central neuromodulatory pathways regulating sympathetic activity in hypertension. J Appl Physiol. 2012;113:1294–303.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hirooka Y. Localized gene transfer and its application for the study of central cardiovascular control. Auton Neurosci. 2006;126/127:120–9.

    Article  Google Scholar 

  8. Hirooka Y. Role of reactive oxygen species in brainstem in neural mechanisms of hypertension. Auton Neurosci. 2008;142:20–4.

    Article  CAS  PubMed  Google Scholar 

  9. Hirooka Y. Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res. 2011;34:407–12.

    Article  CAS  PubMed  Google Scholar 

  10. Hirooka Y, Kimura Y, Nozoe M, Sagara Y, Ito K, Sunagawa K. Amlodipine-induced reduction of oxidative stress in the brain is associated with sympatho-inhibitory effects in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2006;29:49–56.

    Article  CAS  PubMed  Google Scholar 

  11. Hirooka Y, Sagara Y, Kishi T, Sunagawa K. Oxidative stress and central cardiovascular regulation-pathogenesis of hypertension and therapeutic aspects. Circ J. 2010;74:827–35.

    Article  CAS  PubMed  Google Scholar 

  12. Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol. 2011;300:R818–26.

    Article  CAS  PubMed  Google Scholar 

  13. Hirooka Y, Kishi T, Ito K, Sunagawa K. Potential clinical application of recently discovered brain mechanisms involved in hypertension. Hypertension. 2013;62:995–1002.

    Article  CAS  PubMed  Google Scholar 

  14. Honda N, Hirooka Y, Ito K, Matsukawa R, Shinohara K, Kishi T, et al. Moxonidine-induced central sympathoinhibition improves prognosis in rats with hypertensive heart failure. J Hypertens. 2013;31:2300–8.

    Article  CAS  PubMed  Google Scholar 

  15. Isegawa K, Hirooka Y, Katsuki M, Kishi T, Sunagawa K. Angiotensin type 1 receptor expression in astrocytes is upregulated leading to increased mortality in mice with myocardial infarction-induced heart failure. Am J Physiol Heart Circ Physiol. 2014;307:H1448–55.

    Article  CAS  PubMed  Google Scholar 

  16. Kimura Y, Hirooka Y, Sagara Y, Ito K, Kishi T, Shimokawa H, et al. Ocerexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Circ Res. 2005;96:252–60.

    Article  CAS  PubMed  Google Scholar 

  17. Kimura Y, Hirooka Y, Kishi T, Ito K, Sagara Y, Sunagawa K. Role of inducible synthase in rostral ventrolateral medulla in blood pressure regulation in spontaneously hypertensive rats. Clin Exp Hypertens. 2009;31:281–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolaterla medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109:2357–62.

    Article  CAS  PubMed  Google Scholar 

  19. Kishi T, Hirooka Y, Shimokawa H, Takeshita A, Sunagawa K. Atorvastatin reduces oxidative stress in the rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens. 2008;30:3–11.

    Article  CAS  PubMed  Google Scholar 

  20. Kishi T, Hirooka Y, Konno S, Sunagawa K. Atorvastatin improves the impaired baroreflex sensitivity via anti-oxidant effect in the rostral ventrolateral medulla of SHRSP. Clin Exp Hypertens. 2009;31:698–704.

    Article  CAS  PubMed  Google Scholar 

  21. Kishi T, Hirooka Y, Konno S, Ogawa K, Sunagawa K. Angiotensin II type 1 receptor-activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Hypertension. 2010;55:291–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kishi T, Hirooka Y, Ogawa K, Konno S, Sunagawa K. Calorie restriction inhibits sympathetic nerve activity via anti-oxidant effect in the rostral ventrolateral medulla of obesity-induced hypertensive rats. Clin Exp Hypertens. 2011;33:240–5.

    Article  CAS  PubMed  Google Scholar 

  23. Kishi T, Hirooka Y, Sunagawa K. Sympathoinhibition caused by orally administered telmisartan through inhibition of the AT1 receptor in the rostral ventrolateral medulla of hypertensive rats. Hypertens Res. 2012;35:940–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kishi T, Hirooka Y, Sunagwa K. Telmisartan reduces mortality and left ventricular hypertrophy with sympathoinhibition in rats with hypertension and heart failure. Am J Hypertens. 2014;27:260–7.

    Article  CAS  PubMed  Google Scholar 

  25. Koga Y, Hirooka Y, Araki S, Nozoe M, Kishi T, Sunagawa K. High salt intake enhances blood pressure increase during development of hypertension via oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Hypertens Res. 2008;31:2075–83.

    Article  CAS  PubMed  Google Scholar 

  26. Konno S, Hirooka Y, Araki S, Koga Y, Kishi T, Sunagawa K. Azelnidipine decreases sympathetic nerve activity via antioxidant effect in the rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharamacol. 2008;52:555–60.

    Article  CAS  Google Scholar 

  27. Konno S, Hirooka Y, Kishi T, Sunagawa K. Sympathoinhibitory effects of telmisartan through the reduction of oxidative stress in the rostral ventrolateral medulla of obesity-induced hypertensive rats. J Hypertens. 2012;30:1992–9.

    Article  CAS  PubMed  Google Scholar 

  28. Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal. 2014;20:164–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagayama T, Hirooka Y, Kishi T, Mukai Y, Inoue S, Takase S, et al. Blockade of brain angiotensin II type 1 receptor inhibits the development of atrial fibrillation in hypertensive rats. Am J Hypertens. 2015;28:444–51.

    Article  PubMed  Google Scholar 

  30. Nishihara M, Hirooka Y, Matsukawa R, Kishi T, Sunagawa K. Oxidative stress in the rostral ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats. J Hypertens. 2012;30:97–106.

    Article  CAS  PubMed  Google Scholar 

  31. Nishihara M, Hirooka Y, Kishi T, Sunagawa K. Different role of oxidative stress in paraventricular nucleus and rostral ventrolateral medulla in cardiovascular regulation in awake spontaneously hypertensive rats. J Hypertens. 2012;30:1758–65.

    Article  CAS  PubMed  Google Scholar 

  32. Nishihara M, Hirooka Y, Sunagwa K. Combining irebesartan and trichlormethiazide enhances blood pressure reduction via inhibition of sympathetic activity without adverse effects on metabolism in hypertensive rats with metabolic syndrome. Clin Exp Hypertens. 2015;37:33–8.

    Article  CAS  PubMed  Google Scholar 

  33. Nozoe M, Hirooka Y, Koga Y, Sagara Y, Kishi T, Engelhardt JF, et al. Inhibition of rac1-derived reactive oxygen species in nucleus tractus solitarius decreases blood pressure and heart arte in stroke-prone spontaneously hypertensive rats. Hypertension. 2007;50:62–8.

    Article  CAS  PubMed  Google Scholar 

  34. Nozoe M, Hirooka Y, Koga Y, Araki S, Konno S, Kishi T, et al. Mitochndria-derived reactive oxygen species mediate sympathoexcitation induced by angiotensin II in the rostral ventrolateral medulla. J Hypertens. 2008;26:2176–84.

    Article  CAS  PubMed  Google Scholar 

  35. Ogawa K, Hirooka Y, Shinohara K, Kishi T, Sunagawa K. Inhibition of oxidative stress in rostral ventrolateral medulla improves impaired baroreflex sensitivity in stroke-prone spontaneously hypertensive rats. Int Heart J. 2012;53:193–8.

    Article  CAS  PubMed  Google Scholar 

  36. Shinohara K, Hirooka Y, Kishi T, Sunagawa K. Reduction of nitric oxide-mediated γ-amino butyric acid release in rostral ventrolateral medulla is involved in superoxide-induced sympathoexcitation of hypertensive rats. Circ J. 2012;76:2814–21.

    Article  CAS  PubMed  Google Scholar 

  37. Sorota S. The sympathetic nervous system as a target for the treatment of hypertension and cardiometabolic diseases. J Cardiovasc Pharamacol. 2014;63:466–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The series of studies was supported by Grants-in Aid for Scientific Research from the Japan Society for the Promotion of Science (B193290231, B24390198). The Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University is supported by Actelion Pharmaceuticals Ltd (Y.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Hirooka M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hirooka, Y., Sunagawa, K. (2017). Oxidative Stress and Central Regulation of Blood Pressure. In: Rodriguez-Porcel, M., Chade, A., Miller, J. (eds) Studies on Atherosclerosis. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7693-2_5

Download citation

Publish with us

Policies and ethics