Role of Oxidative Stress in Hypertension

  • Sophocles ChrissobolisEmail author
  • Quynh N. Dinh
  • Grant R. Drummond
  • Christopher G. Sobey
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Oxidative stress, defined as an increase in steady-state levels of superoxide, is involved in the pathogenesis of several cardiovascular diseases. Hypertension is a major risk factor for cardiovascular diseases, and there exists much experimental support for a role of oxidative stress in hypertension, often in association with vascular abnormalities including endothelial dysfunction. Vascular NADPH oxidases (Nox) are by far the most researched topic amongst the sources of reactive oxygen species (ROS) in hypertension, and are thought to be a predominant underlying cause of oxidative stress in hypertension. The purpose of this chapter is to discuss the involvement of oxidative stress in association with vascular abnormalities in animal models of hypertension, with a particular emphasis on evidence for involvement of Nox in three commonly studied models: angiotensin II (Ang II)-induced hypertension, mineralocorticoid-dependent hypertension and the spontaneously hypertensive rat (SHR). Antioxidant defence mechanisms (i.e. superoxide dismutases [SOD]’s and glutathione peroxidases [GPx’s]) may limit vascular oxidative stress, thus experimental evidence discussing their likely protection against vascular oxidative stress and hypertension will be discussed. Recent concepts regarding the link between oxidative stress, the immune system and hypertension will also be covered, and finally we will briefly address clinical data providing an association between oxidative stress and hypertension, in particular the link between genetic abnormalities and oxidative stress in hypertension.


Angiotensin II Glutathione peroxidases Hypertension Immunity NADPH oxidase Mineralocorticoids Oxidative stress Superoxide dismutases Vascular dysfunction Vascular remodelling 


Ang II

Angiotensin II


Angiotensin II type 1 receptor




CD40 ligand




Copper-zinc superoxide dismutase


Deoxycorticosterone acetate


Dual oxidase


Extracellular superoxide dismutase


Endothelial nitric oxide synthase


Glucose-6-phosphate dehydrogenase


Glutathione peroxidase


Intracellular adhesion molecule-1


Manganese superoxide dismutase


Nitric oxide


Peroxisome proliferator-activated receptor beta


Reactive nitrogen species


Reactive oxygen species


Spontaneously hypertensive rat


Stroke-prone spontaneously hypertensive rat


Small-interfering RNA


Superoxide dismutase


Tumour necrosis factor alpha


Vascular cell adhesion molecule-1




  1. 1.
    Chrissobolis S, Miller AA, Drummond GR, Kemp-Harper BK, Sobey CG. Oxidative stress and endothelial dysfunction in cerebrovascular disease. Front Biosci. 2011;16:1733–45.CrossRefGoogle Scholar
  2. 2.
    Chrissobolis S, Faraci FM. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med. 2008;14(11):495–502.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44(3):248–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Ventura HO, Taler SJ, Strobeck JE. Hypertension as a hemodynamic disease: the role of impedance cardiography in diagnostic, prognostic, and therapeutic decision making. Am J Hypertens. 2005;18(2 Pt 2):26S–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Messerli FH, Williams B, Ritz E. Essential hypertension. Lancet. 2007;370(9587):591–603.PubMedCrossRefGoogle Scholar
  6. 6.
    Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal. 2014;20(1):164–82.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10(6):453–71.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17(11):1402–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int. 2014;2014:406960.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292.Google Scholar
  11. 11.
    McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 2015;116(6):1022–33.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.PubMedCrossRefGoogle Scholar
  13. 13.
    Drummond GR, Sobey CG. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol Metab. 2014;25(9):452–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Brandes RP, Weissmann N, Schroder K. NADPH oxidases in cardiovascular disease. Free Radic Biol Med. 2010;49(5):687–706.PubMedCrossRefGoogle Scholar
  15. 15.
    Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR. NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther. 2008;120(3):254–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, et al. NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke. 2005;36(5):1040–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Dworakowski R, Alom-Ruiz SP, Shah AM. NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacol Rep. 2008;60(1):21–8.PubMedGoogle Scholar
  18. 18.
    Sorescu D, Weiss D, Lassegue B, Clempus RE, Szocs K, Sorescu GP, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002;105(12):1429–35.PubMedCrossRefGoogle Scholar
  19. 19.
    BelAiba RS, Djordjevic T, Petry A, Diemer K, Bonello S, Banfi B, et al. NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med. 2007;42(4):446–59.PubMedCrossRefGoogle Scholar
  20. 20.
    Ellmark SH, Dusting GJ, Fui MN, Guzzo-Pernell N, Drummond GR. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res. 2005;65(2):495–504.PubMedCrossRefGoogle Scholar
  21. 21.
    Lassegue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 2010;30(4):653–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, et al. Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res. 2001;88(9):888–94.PubMedCrossRefGoogle Scholar
  23. 23.
    Moe KT, Aulia S, Jiang F, Chua YL, Koh TH, Wong MC, et al. Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells. J Cell Mol Med. 2006;10(1):231–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Chamseddine AH, Miller Jr FJ. Gp91phox contributes to NADPH oxidase activity in aortic fibroblasts but not smooth muscle cells. Am J Physiol Heart Circ Physiol. 2003;285(6):H2284–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Haurani MJ, Pagano PJ. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: bellwether for vascular disease? Cardiovasc Res. 2007;75(4):679–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci U S A. 1997;94(26):14483–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chrissobolis S, Banfi B, Sobey CG, Faraci FM. Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. J Appl Physiol. 2012;113(2):184–91.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett. 2006;580(2):497–504.PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsuki M, et al. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation. 2005;112(17):2677–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S, et al. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation. 2005;112(17):2668–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, et al. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res. 2001;88(9):947–53.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang A, Jia Z, Wang N, Tidwell TJ, Yang T. Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int. 2011;80(1):51–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Bendall JK, Rinze R, Adlam D, Tatham AL, de Bono J, Wilson N, et al. Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circ Res. 2007;100(7):1016–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Murdoch CE, Alom-Ruiz SP, Wang M, Zhang M, Walker S, Yu B, et al. Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol. 2011;106(4):527–38.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, Alom-Ruiz S, et al. Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol. 2011;31(6):1368–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Garrido AM, Griendling KK. NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol. 2009;302(2):148–58.PubMedCrossRefGoogle Scholar
  37. 37.
    Gori T, Munzel T. Oxidative stress and endothelial dysfunction: therapeutic implications. Ann Med. 2011;43(4):259–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Guzik TJ, Harrison DG. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today. 2006;11(11-12):524–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Schulz E, Gori T, Munzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011;34(6):665–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Virdis A, Duranti E, Taddei S. Oxidative stress and vascular damage in hypertension: role of angiotensin II. Int J Hypertens. 2011;2011:916310.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Dikalova AE, Gongora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK. Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol. 2010;299(3):H673–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Girouard H, Park L, Anrather J, Zhou P, Iadecola C. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals. Arterioscler Thromb Vasc Biol. 2006;26(4):826–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling KK, et al. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal. 2014;20(2):281–94.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(−) and systolic blood pressure in mice. Circ Res. 2001;89(5):408–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Martinez-Revelles S, Avendano MS, Garcia-Redondo AB, Alvarez Y, Aguado A, Perez-Giron JV, et al. Reciprocal relationship between reactive oxygen species and cyclooxygenase-2 and vascular dysfunction in hypertension. Antioxid Redox Signal. 2013;18(1):51–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Schroder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res. 2012;110(9):1217–25.PubMedCrossRefGoogle Scholar
  47. 47.
    Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, et al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension. 2002;40(4):511–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ebrahimian T, Li MW, Lemarie CA, Simeone SM, Pagano PJ, Gaestel M, et al. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. Hypertension. 2011;57(2):245–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Matsui R, Xu S, Maitland KA, Hayes A, Leopold JA, Handy DE, et al. Glucose-6 phosphate dehydrogenase deficiency decreases the vascular response to angiotensin II. Circulation. 2005;112(2):257–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Cifuentes ME, Rey FE, Carretero OA, Pagano PJ. Upregulation of p67(phox) and gp91(phox) in aortas from angiotensin II-infused mice. Am J Physiol Heart Circ Physiol. 2000;279(5):H2234–40.PubMedGoogle Scholar
  51. 51.
    Modlinger P, Chabrashvili T, Gill PS, Mendonca M, Harrison DG, Griendling KK, et al. RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension. 2006;47(2):238–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Fujii A, Nakano D, Katsuragi M, Ohkita M, Takaoka M, Ohno Y, et al. Role of gp91phox-containing NADPH oxidase in the deoxycorticosterone acetate-salt-induced hypertension. Eur J Pharmacol. 2006;552(1-3):131–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Chrissobolis S, Drummond GR, Faraci FM, Sobey CG. Chronic aldosterone administration causes Nox2-mediated increases in reactive oxygen species production and endothelial dysfunction in the cerebral circulation. J Hypertens. 2014;32(9):1815–21.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Viel EC, Benkirane K, Javeshghani D, Touyz RM, Schiffrin EL. Xanthine oxidase and mitochondria contribute to vascular superoxide anion generation in DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol. 2008;295(1):H281–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Beswick RA, Dorrance AM, Leite R, Webb RC. NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension. 2001;38(5):1107–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Jimenez R, Lopez-Sepulveda R, Kadmiri M, Romero M, Vera R, Sanchez M, et al. Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase. Free Radic Biol Med. 2007;43(3):462–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen QZ, Han WQ, Chen J, Zhu DL, Chen Y, Gao PJ. Anti-stiffness effect of apocynin in deoxycorticosterone acetate-salt hypertensive rats via inhibition of oxidative stress. Hypertens Res. 2013;36(4):306–12.PubMedCrossRefGoogle Scholar
  58. 58.
    Gomez-Guzman M, Jimenez R, Sanchez M, Zarzuelo MJ, Galindo P, Quintela AM, et al. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med. 2012;52(1):70–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Youn JY, Wang T, Blair J, Laude KM, Oak JH, McCann LA, et al. Endothelium-specific sepiapterin reductase deficiency in DOCA-salt hypertension. Am J Physiol Heart Circ Physiol. 2012;302(11):H2243–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Park JB, Touyz RM, Chen X, Schiffrin EL. Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens. 2002;15(1 Pt 1):78–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Briones AM, Tabet F, Callera GE, Montezano AC, Yogi A, He Y, et al. Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHR. J Am Soc Hypertens. 2011;5(3):137–53.PubMedCrossRefGoogle Scholar
  62. 62.
    Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG. Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke. 2004;35(2):584–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Roque FR, Briones AM, Garcia-Redondo AB, Galan M, Martinez-Revelles S, Avendano MS, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol. 2013;168(3):686–703.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ren Y, D'Ambrosio MA, Liu R, Pagano PJ, Garvin JL, Carretero OA. Enhanced myogenic response in the afferent arteriole of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2010;298(6):H1769–75.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zarzuelo MJ, Jimenez R, Galindo P, Sanchez M, Nieto A, Romero M, et al. Antihypertensive effects of peroxisome proliferator-activated receptor-beta activation in spontaneously hypertensive rats. Hypertension. 2011;58(4):733–43.PubMedCrossRefGoogle Scholar
  66. 66.
    Wind S, Beuerlein K, Armitage ME, Taye A, Kumar AH, Janowitz D, et al. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension. 2010;56(3):490–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Podlutsky A, Ballabh P, Csiszar A. Oxidative stress and endothelial dysfunction in pulmonary arteries of aged rats. Am J Physiol Heart Circ Physiol. 2010;298(2):H346–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Akasaki T, Ohya Y, Kuroda J, Eto K, Abe I, Sumimoto H, et al. Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin-angiotensin system. Hypertens Res. 2006;29(10):813–20.PubMedCrossRefGoogle Scholar
  69. 69.
    Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004;95(2):210–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Peterson JR, Burmeister MA, Tian X, Zhou Y, Guruju MR, Stupinski JA, et al. Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II. Hypertension. 2009;54(5):1106–14.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lob HE, Schultz D, Marvar PJ, Davisson RL, Harrison DG. Role of the NADPH oxidases in the subfornical organ in angiotensin II-induced hypertension. Hypertension. 2013;61(2):382–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Nozoe M, Hirooka Y, Koga Y, Sagara Y, Kishi T, Engelhardt JF, et al. Inhibition of Rac1-derived reactive oxygen species in nucleus tractus solitarius decreases blood pressure and heart rate in stroke-prone spontaneously hypertensive rats. Hypertension. 2007;50(1):62–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol. 2004;24:1367–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–606.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Didion SP, Ryan MJ, Didion LA, Fegan PE, Sigmund CD, Faraci FM. Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res. 2002;91(10):938–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Baumbach GL, Didion SP, Faraci FM. Hypertrophy of cerebral arterioles in mice deficient in expression of the gene for CuZn superoxide dismutase. Stroke. 2006;37(7):1850–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Didion SP, Kinzenbaw DA, Schrader LI, Faraci FM. Heterozygous CuZn superoxide dismutase deficiency produces a vascular phenotype with aging. Hypertension. 2006;48(6):1072–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang HD, Johns DG, Xu S, Cohen RA. Role of superoxide anion in regulating pressor and vascular hypertrophic response to angiotensin II. Am J Physiol Heart Circ Physiol. 2002;282(5):H1697–702.PubMedCrossRefGoogle Scholar
  79. 79.
    Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11(4):376–81.PubMedCrossRefGoogle Scholar
  80. 80.
    Suzuki K, Tatsumi H, Satoh S, Senda T, Nakata T, Fujii J, et al. Manganese-superoxide dismutase in endothelial cells: localization and mechanism of induction. Am J Physiol Heart Circ Physiol. 1993;265(4 Pt 2):H1173–8.Google Scholar
  81. 81.
    Uddin M, Yang H, Shi M, Polley-Mandal M, Guo Z. Elevation of oxidative stress in the aorta of genetically hypertensive mice. Mech Ageing Dev. 2003;124:811–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Ulker S, McMaster D, McKeown PP, Bayraktutan U. Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. Cardiovasc Res. 2003;59:488–500.PubMedCrossRefGoogle Scholar
  83. 83.
    Rodriguez-Iturbe B, Sepassi L, Quiroz Y, Ni Z, Vaziri ND. Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence. J Appl Physiol. 2007;102(1):255–60.PubMedCrossRefGoogle Scholar
  84. 84.
    Chrissobolis S, Faraci FM. Sex differences in protection against angiotensin ii-induced endothelial dysfunction by manganese superoxide dismutase in the cerebral circulation. Hypertension. 2010;55(4):905–10.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, et al. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension. 2005;45(3):438–44.PubMedCrossRefGoogle Scholar
  86. 86.
    Nazarewicz RR, Dikalova AE, Bikineyeva A, Dikalov SI. Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. Am J Physiol Heart Circ Physiol. 2013;305(8):H1131–40.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, et al. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res. 2010;107(1):106–16.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wenzel P, Schuhmacher S, Kienhofer J, Muller J, Hortmann M, Oelze M, et al. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc Res. 2008;80(2):280–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Roos CM, Hagler M, Zhang B, Oehler EA, Arghami A, Miller JD. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice. Am J Physiol Heart Circ Physiol. 2013;305(10):H1428–39.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gongora MC, Qin Z, Laude K, Kim HW, McCann L, Folz JR, et al. Role of extracellular superoxide dismutase in hypertension. Hypertension. 2006;48(3):473–81.PubMedCrossRefGoogle Scholar
  91. 91.
    Jung O, Marklund SL, Geiger H, Pedrazzini T, Busse R, Brandes RP. Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ Res. 2003;93(7):622–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Qin Z, Gongora MC, Ozumi K, Itoh S, Akram K, Ushio-Fukai M, et al. Role of Menkes ATPase in angiotensin II-induced hypertension: a key modulator for extracellular superoxide dismutase function. Hypertension. 2008;52(5):945–51.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ozumi K, Sudhahar V, Kim HW, Chen GF, Kohno T, Finney L, et al. Role of copper transport protein antioxidant 1 in angiotensin II-induced hypertension: a key regulator of extracellular superoxide dismutase. Hypertension. 2012;60(2):476–86.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lob HE, Vinh A, Li L, Blinder Y, Offermanns S, Harrison DG. Role of vascular extracellular superoxide dismutase in hypertension. Hypertension. 2011;58(2):232–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lubos E, Kelly NJ, Oldebeken SR, Leopold JA, Zhang YY, Loscalzo J, et al. Glutathione peroxidase-1 deficiency augments proinflammatory cytokine-induced redox signaling and human endothelial cell activation. J Biol Chem. 2011;286(41):35407–17.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hoen PA, Van der Lans CA, Van Eck M, Bijsterbosch MK, Van Berkel TJ, Twisk J. Aorta of ApoE-deficient mice responds to atherogenic stimuli by a prelesional increase and subsequent decrease in the expression of antioxidant enzymes. Circ Res. 2003;93(3):262–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Ardanaz N, Yang XP, Cifuentes ME, Haurani MJ, Jackson KW, Liao TD, et al. Lack of glutathione peroxidase 1 accelerates cardiac-specific hypertrophy and dysfunction in angiotensin II hypertension. Hypertension. 2010;55(1):116–23.PubMedCrossRefGoogle Scholar
  98. 98.
    Forgione MA, Cap A, Liao R, Moldovan NI, Eberhardt RT, Lim CC, et al. Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation. 2002;106(9):1154–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Chrissobolis S, Didion SP, Kinzenbaw DA, Schrader LI, Dayal S, Lentz SR, et al. Glutathione peroxidase-1 plays a major role in protecting against angiotensin II-induced vascular dysfunction. Hypertension. 2008;51:872–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Oelze M, Kroller-Schon S, Steven S, Lubos E, Doppler C, Hausding M, et al. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension. 2014;63(2):390–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Ruseva B, Atanasova M, Georgieva M, Shumkov N, Laleva P. Effects of selenium on the vessel walls and anti-elastin antibodies in spontaneously hypertensive rats. Exp Biol Med. 2012;237(2):160–6.CrossRefGoogle Scholar
  102. 102.
    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204(10):2449–60.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ji H, Zheng W, Li X, Liu J, Wu X, Zhang MA, et al. Sex-specific T-cell regulation of angiotensin II-dependent hypertension. Hypertension. 2014;64(3):573–82.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hausding M, Jurk K, Daub S, Kroller-Schon S, Stein J, Schwenk M, et al. CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction. Basic Res Cardiol. 2013;108(6):386.PubMedCrossRefGoogle Scholar
  105. 105.
    Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011;124(12):1370–81.PubMedCrossRefGoogle Scholar
  106. 106.
    Montezano AC, Touyz RM. Oxidative stress, Noxs, and hypertension: experimental evidence and clinical controversies. Ann Med. 2012;44 Suppl 1:S2–16.PubMedCrossRefGoogle Scholar
  107. 107.
    Guzik TJ, Chen W, Gongora MC, Guzik B, Lob HE, Mangalat D, et al. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol. 2008;52(22):1803–9.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Touyz RM, Schiffrin EL. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens. 2001;19(7):1245–54.PubMedCrossRefGoogle Scholar
  109. 109.
    San Jose G, Moreno MU, Olivan S, Beloqui O, Fortuno A, Diez J, et al. Functional effect of the p22phox -930A/G polymorphism on p22phox expression and NADPH oxidase activity in hypertension. Hypertension. 2004;44(2):163–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Schreiber R, Ferreira-Sae MC, Ronchi JA, Pio-Magalhaes JA, Cipolli JA, Matos-Souza JR, et al. The C242T polymorphism of the p22-phox gene (CYBA) is associated with higher left ventricular mass in Brazilian hypertensive patients. BMC Med Genet. 2011;12:114.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Moreno MU, San Jose G, Fortuno A, Beloqui O, Diez J, Zalba G. The C242T CYBA polymorphism of NADPH oxidase is associated with essential hypertension. J Hypertens. 2006;24(7):1299–306.PubMedCrossRefGoogle Scholar
  112. 112.
    Moreno MU, San Jose G, Fortuno A, Beloqui O, Redon J, Chaves FJ, et al. A novel CYBA variant, the -675A/T polymorphism, is associated with essential hypertension. J Hypertens. 2007;25(8):1620–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sophocles Chrissobolis
    • 1
    Email author
  • Quynh N. Dinh
    • 1
  • Grant R. Drummond
    • 1
  • Christopher G. Sobey
    • 1
  1. 1.Department of PharmacologyMonash UniversityClaytonAustralia

Personalised recommendations