Advertisement

Oxidative Stress and Vascular Injury

  • Akshaar Brahmbhatt
  • Sanjay MisraEmail author
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Oxidative stress is responsible for aggravating vascular injury associated with atherosclerosis, chronic kidney disease (CKD), and end-stage renal disease (ESRD). The present chapter reviews the mechanisms responsible for oxidative stress contributing to vascular injury. We will discuss the role in hemodialysis vascular access failure, chronic kidney disease, and atherosclerosis.

Keywords

CKD ESRD Atherosclerosis Oxidatve stress Vascular injury Vascular access failure 

Notes

Acknowledgments

This work was funded by a HL098967 (SM) from the National Heart, Lung, And Blood Institute.

References

  1. 1.
    Tucker PS, Scanlan AT, Dalbo VJ. Chronic Kidney Disease Influences Multiple Systems: Describing the Relationship between Oxidative Stress, Inflammation, Kidney Damage, and Concomitant Disease. Oxid Med Cell Longev. 2015;2015:806358. doi: 10.1155/2015/806358.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65(3):1009–16. doi: 10.1111/j.1523-1755.2004.00465.x.CrossRefPubMedGoogle Scholar
  3. 3.
    Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62(5):1524–38. doi: 10.1046/j.1523-1755.2002.00600.x.CrossRefPubMedGoogle Scholar
  4. 4.
    Kokubo T, Ishikawa N, Uchida H, Chasnoff SE, Xie X, Mathew S, et al. CKD accelerates development of neointimal hyperplasia in arteriovenous fistulas. J Am Soc Nephrol. 2009;20(6):1236–45. doi: 10.1681/asn.2007121312.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yang B, Vohra PK, Janardhanan R, Misra KD, Misra S. Expression of profibrotic genes in a murine remnant kidney model. J Vasc Interv Radiol. 2011;22 12, 1765–1772.e1761. doi:10.1016/j.jvir.2011.08.026Google Scholar
  6. 6.
    Lee T, Chauhan V, Krishnamoorthy M, Wang Y, Arend L, Mistry MJ, et al. Severe venous neointimal hyperplasia prior to dialysis access surgery. Nephrol Dial Transplant. 2011;26(7):2264–70. doi: 10.1093/ndt/gfq733.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liang A, Wang Y, Han G, Truong L, Cheng J. Chronic kidney disease accelerates endothelial barrier dysfunction in a mouse model of an arteriovenous fistula. Am J Physiol Renal Physiol. 2013;304(12):F1413–20. doi: 10.1152/ajprenal.00585.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. 2008;111:S4–9. doi: 10.1038/ki.2008.516.CrossRefGoogle Scholar
  9. 9.
    Puchades MJ, Saez G, Munoz MC, Gonzalez M, Torregrosa I, Juan I, et al. Study of oxidative stress in patients with advanced renal disease and undergoing either hemodialysis or peritoneal dialysis. Clin Nephrol. 2013;80(3):177–86. doi: 10.5414/cn107639.CrossRefPubMedGoogle Scholar
  10. 10.
    Ansarihadipour H, Dorostkar H. Comparison of plasma oxidative biomarkers and conformational modifications of hemoglobin in patients with diabetes on hemodialysis. Iran Red Crescent Med J. 2014;16(11), e22045. doi: 10.5812/ircmj.22045.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tschopp J. Mitochondria: Sovereign of inflammation? Eur J Immunol. 2011;41(5):1196–202. doi: 10.1002/eji.201141436.CrossRefPubMedGoogle Scholar
  12. 12.
    Yazdi PG, Moradi H, Yang JY, Wang PH, Vaziri ND. Skeletal muscle mitochondrial depletion and dysfunction in chronic kidney disease. Int J Clin Exp Med. 2013;6(7):532–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wasse H, Huang R, Naqvi N, Smith E, Wang D, Husain A. Inflammation, oxidation and venous neointimal hyperplasia precede vascular injury from AVF creation in CKD patients. J Vasc Access. 2012;13(2):168–74. doi: 10.5301/jva.5000024.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dursun B, Dursun E, Suleymanlar G, Ozben B, Capraz I, Apaydin A, et al. Carotid artery intima-media thickness correlates with oxidative stress in chronic haemodialysis patients with accelerated atherosclerosis. Nephrol Dial Transplant. 2008;23(5):1697–703. doi: 10.1093/ndt/gfm906.CrossRefPubMedGoogle Scholar
  15. 15.
    Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the Transcription Factor Nrf2 to Ameliorate Oxidative Stress and Inflammation in Chronic Kidney Disease. Kidney Int. 2013;83(6):1029–41. doi: 10.1038/ki.2012.439.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant. 2003;18(7):1272–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics. 2009;10:388. doi: 10.1186/1471-2164-10-388.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441(2):523–40. doi: 10.1042/bj20111451.CrossRefPubMedGoogle Scholar
  19. 19.
    Feldman HI, Joffe M, Rosas SE, Burns JE, Knauss J, Brayman K. Predictors of successful arteriovenous fistula maturation. Am J Kidney Dis. 2003;42(5):1000–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Huijbregts HJT, Bots ML, Wittens CHA, Schrama YC, Moll FL, Blankestijn PJ, et al. Hemodialysis arteriovenous fistula patency revisited: results of a prospective, multicenter initiative. Clin J Am Soc Nephrol. 2008;3(3):714–9. doi: 10.2215/CJN.02950707.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gupta S, Gambhir JK, Kalra O, Gautam A, Shukla K, Mehndiratta M, et al. Association of biomarkers of inflammation and oxidative stress with the risk of chronic kidney disease in Type 2 diabetes mellitus in North Indian population. J Diabetes Complications. 2013;27(6):548–52. doi: 10.1016/j.jdiacomp.2013.07.005.CrossRefPubMedGoogle Scholar
  22. 22.
    Takeda R, Suzuki E, Satonaka H, Oba S, Nishimatsu H, Omata M, et al. Blockade of endogenous cytokines mitigates neointimal formation in obese Zucker rats. Circulation. 2005;111(11):1398–406. doi: 10.1161/01.cir.0000158482.83179.db.CrossRefPubMedGoogle Scholar
  23. 23.
    Vassalotti JA, Jennings WC, Beathard GA, Neumann M, Caponi S, Fox CH, et al. Fistula first breakthrough initiative: targeting catheter last in fistula first. Semin Dial. 2012;25(3):303–10. doi: 10.1111/j.1525-139X.2012.01069.x.CrossRefPubMedGoogle Scholar
  24. 24.
    Dixon BS. Why don’t fistulas mature? Kidney Int. 2006;70(8):1413–22. doi: 10.1038/sj.ki.5001747.
  25. 25.
    Sener EF, Taheri S, Korkmaz K, Zararsiz G, Serhatlioglu F, Unal A, et al. Association of TNF-alpha −308 G > A and ACE I/D gene polymorphisms in hemodialysis patients with arteriovenous fistula thrombosis. Int Urol Nephrol. 2014;46(7):1419–25. doi: 10.1007/s11255-013-0580-2.CrossRefPubMedGoogle Scholar
  26. 26.
    Guijarro C, Egido J. Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int. 2001;59(2):415–24. doi: 10.1046/j.1523-1755.2001.059002415.x.CrossRefPubMedGoogle Scholar
  27. 27.
    Carbo C, Arderiu G, Escolar G, Fuste B, Cases A, Carrascal M, et al. Differential expression of proteins from cultured endothelial cells exposed to uremic versus normal serum. Am J Kidney Dis. 2008;51(4):603–12. doi: 10.1053/j.ajkd.2007.11.029.CrossRefPubMedGoogle Scholar
  28. 28.
    Martin-Rodriguez S, Caballo C, Gutierrez G, Vera M, Cruzado JM, Cases A, et al. TLR4 and NALP3 inflammasome in the development of endothelial dysfunction in uraemia. Eur J Clin Invest. 2015;45(2):160–9. doi: 10.1111/eci.12392.CrossRefPubMedGoogle Scholar
  29. 29.
    Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32. doi: 10.1016/j.cell.2010.01.040.CrossRefPubMedGoogle Scholar
  30. 30.
    Misra S, Fu AA, Rajan DK, Juncos LA, McKusick MA, Bjarnason H, et al. Expression of hypoxia inducible factor-1 alpha, macrophage migration inhibition factor, matrix metalloproteinase-2 and −9, and their inhibitors in hemodialysis grafts and arteriovenous fistulas. J Vasc Interv Radiol. 2008;19(2 Pt 1):252–9. doi: 10.1016/j.jvir.2007.10.031.CrossRefPubMedGoogle Scholar
  31. 31.
    Asare Y, Schmitt M, Bernhagen J. The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost. 2013;109(3):391–8. doi: 10.1160/th12-11-0831.CrossRefPubMedGoogle Scholar
  32. 32.
    Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–26. doi: 10.1089/jir.2008.0027.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stracke S, Konner K, Köstlin I, Friedl R, Jehle PM, Hombach V, et al. Increased expression of TGF-beta1 and IGF-I in inflammatory stenotic lesions of hemodialysis fistulas. Kidney Int. 2002;61(3):1011–9. doi: 10.1046/j.1523-1755.2002.00191.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Misra S, Shergill U, Yang B, Janardhanan R, Misra KD. Increased expression of HIF-1alpha, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency. J Vasc Interv Radiol. 2010;21(8):1255–61. doi: 10.1016/j.jvir.2010.02.043.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Misra S, Fu AA, Puggioni A, Glockner JF, Rajan DK, McKusick MA, et al. Increased expression of hypoxia-inducible factor-1 alpha in venous stenosis of arteriovenous polytetrafluoroethylene grafts in a chronic renal insufficiency porcine model. J Vasc Interv Radiol. 2008;19(2 Pt 1):260–5. doi: 10.1016/j.jvir.2007.10.029.CrossRefPubMedGoogle Scholar
  36. 36.
    Heine GH, Ulrich C, Sester U, Sester M, Kohler H, Girndt M. Transforming growth factor beta1 genotype polymorphisms determine AV fistula patency in hemodialysis patients. Kidney Int. 2003;64(3):1101–7. doi: 10.1046/j.1523-1755.2003.00176.x.CrossRefPubMedGoogle Scholar
  37. 37.
    Misra S, Fu AA, Puggioni A, Karimi KM, Mandrekar JN, Glockner JF, et al. Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9, and TIMP-1 in venous stenosis of hemodialysis grafts. Am J Physiol Heart Circ Physiol. 2008;294(5):H2219–2230. doi: 10.1152/ajpheart.00650.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhu Y, Lawton MT, Du R, Shwe Y, Chen Y, Shen F, et al. Expression of hypoxia-inducible factor-1 and vascular endothelial growth factor in response to venous hypertension. Neurosurgery. 2006;59(3):687–96. doi: 10.1227/01.neu.0000228962.68204.cf. discussion 687–696.CrossRefPubMedGoogle Scholar
  39. 39.
    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. doi: 10.1038/nrc1187.CrossRefPubMedGoogle Scholar
  40. 40.
    Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol. 2006;39(5):469–78.PubMedGoogle Scholar
  41. 41.
    Huusko J, Merentie M, Dijkstra MH, Ryhänen MM, Karvinen H, Rissanen TT, et al. The effects of VEGF-R1 and VEGF-R2 ligands on angiogenic responses and left ventricular function in mice. Cardiovasc Res. 2010;86(1):122–30. doi: 10.1093/cvr/cvp382.CrossRefPubMedGoogle Scholar
  42. 42.
    Wan J, Lata C, Santilli A, Green D, Roy S, Santilli S. Supplemental Oxygen Reverses Hypoxia Induced Smooth Muscle Cell Proliferation by Modulating HIF-alpha and VEGF Levels in a Rabbit Arteriovenous Fistula Model. Ann Vasc Surg. 2014;28(3):725–36. doi: 10.1016/j.avsg.2013.10.007.CrossRefPubMedGoogle Scholar
  43. 43.
    Ohtani K, Egashira K, Hiasa K, Zhao Q, Kitamoto S, Ishibashi M, et al. Blockade of vascular endothelial growth factor suppresses experimental restenosis after intraluminal injury by inhibiting recruitment of monocyte lineage cells. Circulation. 2004;110(16):2444–52. doi: 10.1161/01.cir.0000145123.85083.66.CrossRefPubMedGoogle Scholar
  44. 44.
    Kang L, Grande JP, Farrugia G, Croatt AJ, Katusic ZS, Nath KA. Functioning of an arteriovenous fistula requires heme oxygenase-2. Am J Physiol Renal Physiol. 2013;305(4):F545–552. doi: 10.1152/ajprenal.00234.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Vempati P, Popel AS, Mac Gabhann F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev. 2014;25(1):1–19. doi: 10.1016/j.cytogfr.2013.11.002.CrossRefPubMedGoogle Scholar
  46. 46.
    Kikuchi R, Nakamura K, MacLauchlan S, Ngo DT, Shimizu I, Fuster JJ. An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nat Med. 2014;20(12):1464–71. doi: 10.1038/nm.3703.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, et al. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci. 2008;121(Pt 20):3487–95. doi: 10.1242/jcs.016410.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Wang J. TGF-Beta suppresses VEGFA-mediated angiogenesis in colon cancer metastasis. PLoS One. 2013;8(3), e59918. doi: 10.1371/journal.pone.0059918.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nakagawa T, Li JH, Garcia G, Mu W, Piek E, Böttinger EP, et al. TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways. Kidney Int. 2004;66(2):605–13. doi: 10.1111/j.1523-1755.2004.00780.x.CrossRefPubMedGoogle Scholar
  50. 50.
    Shi X, Guo LW, Seedial SM, Si Y, Wang B, Takayama T, et al. TGF-β/Smad3 inhibit vascular smooth muscle cell apoptosis through an autocrine signaling mechanism involving VEGF-A. Cell Death Dis. 2014;5(7), e1317. doi: 10.1038/cddis.2014.282.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Candan F, Yildiz G, Kayatas M. Role of the VEGF 936 gene polymorphism and VEGF-A levels in the late-term arteriovenous fistula thrombosis in patients undergoing hemodialysis. Int Urol Nephrol. 2014;46(9):1815–23. doi: 10.1007/s11255-014-0711-4.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, et al. Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci. 2008;99(7):1304–10. doi: 10.1111/j.1349-7006.2008.00839.x.CrossRefPubMedGoogle Scholar
  53. 53.
    Shen N, Lin H, Wu T, Wang D, Wang W, Xie H, et al. Inhibition of TGF-beta1-receptor posttranslational core fucosylation attenuates rat renal interstitial fibrosis. Kidney Int. 2013;84(1):64–77. doi: 10.1038/ki.2013.82.CrossRefPubMedGoogle Scholar
  54. 54.
    Simone S, Loverre A, Cariello M, Divella C, Castellano G, Gesualdo L, et al. Arteriovenous fistula stenosis in hemodialysis patients is characterized by an increased adventitial fibrosis. J Nephrol. 2014;27(5):555–62. doi: 10.1007/s40620-014-0050-7.CrossRefPubMedGoogle Scholar
  55. 55.
    Lata C, Green D, Wan J, Roy S, Santilli SM. The role of short-term oxygen administration in the prevention of intimal hyperplasia. J Vasc Surg. 2013;58(2):452–9. doi: 10.1016/j.jvs.2012.11.041.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hinderliter A, Padilla RL, Gillespie BW, Levin NW, Kotanko P, Kiser M, et al. Association of carotid intima-media thickness with cardiovascular risk factors and patient outcomes in advanced chronic kidney disease: the RRI-CKD study. Clin Nephrol. 2015;84(7):10–20. doi: 10.5414/cn108494.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shimizu M, Furusyo N, Mitsumoto F, Takayama K, Ura K, Hiramine S, et al. Subclinical carotid atherosclerosis and triglycerides predict the incidence of chronic kidney disease in the Japanese general population: results from the Kyushu and Okinawa Population Study (KOPS). Atherosclerosis. 2015;238(2):207–12. doi: 10.1016/j.atherosclerosis.2014.12.013.CrossRefPubMedGoogle Scholar
  58. 58.
    Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108(17):2154–69. doi: 10.1161/01.cir.0000095676.90936.80.CrossRefPubMedGoogle Scholar
  59. 59.
    Culleton BF, Hemmelgarn BR. Is chronic kidney disease a cardiovascular disease risk factor? Semin Dial. 2003;16(2):95–100.CrossRefPubMedGoogle Scholar
  60. 60.
    Vaziri ND. Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J Ren Nutr. 2010;20(5 Suppl):S35–43. doi: 10.1053/j.jrn.2010.05.010.CrossRefPubMedGoogle Scholar
  61. 61.
    Navab KD, Elboudwarej O, Gharif M, Yu J, Hama SY, Safarpour S, et al. Chronic inflammatory disorders and accelerated atherosclerosis: chronic kidney disease. Curr Pharm Des. 2011;17(1):17–20.CrossRefPubMedGoogle Scholar
  62. 62.
    Szöcs K, Lassègue B, Sorescu D, Hilenski LL, Valppu L, Couse TL, et al. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol. 2002;22(1):21–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Yokoyama M, Inoue N, Kawashima S. Role of the vascular NADH/NADPH oxidase system in atherosclerosis. Ann N Y Acad Sci. 2000;902:241–7. discussion 247–248.CrossRefPubMedGoogle Scholar
  64. 64.
    Jacobson GM, Dourron HM, Liu J, Carretero OA, Reddy DJ, Andrzejewski T, et al. Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res. 2003;92(6):637–43. doi: 10.1161/01.res.0000063423.94645.8a.CrossRefPubMedGoogle Scholar
  65. 65.
    Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, et al. NAD(P)H oxidase mediates TGF-β1–induced activation of kidney myofibroblasts. J Am Soc Nephrol. 2010;21(1):93–102. doi: 10.1681/ASN.2009020146.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005;97(9):900–7. doi: 10.1161/01.res.0000187457.24338.3d.CrossRefPubMedGoogle Scholar
  67. 67.
    Rana I, Velkoska E, Patel SK, Burrell LM, Charchar FJ. MicroRNAs mediate the cardioprotective effect of angiotensin converting enzyme inhibition in acute kidney injury. Am J Physiol Renal Physiol. 2015;309(11):F943–54. doi: 10.1152/ajprenal.00183.2015.PubMedGoogle Scholar
  68. 68.
    Geiszt M. NADPH oxidases: new kids on the block. Cardiovasc Res. 2006;71(2):289–99. doi: 10.1016/j.cardiores.2006.05.004.CrossRefPubMedGoogle Scholar
  69. 69.
    Pawlak K, Brzosko S, Mysliwiec M, Pawlak D. Kynurenine, quinolinic acid the new factors linked to carotid atherosclerosis in patients with end-stage renal disease. Atherosclerosis. 2009;204(2):561–6. doi: 10.1016/j.atherosclerosis.2008.10.002.
  70. 70.
    Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(1):29–38. doi: 10.1161/01.atv.0000150649.39934.13.PubMedGoogle Scholar
  71. 71.
    Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2000;20(10):2175–83.CrossRefPubMedGoogle Scholar
  72. 72.
    De Caterina R, Zampolli A. From asthma to atherosclerosis-5-lipoxygenase, leukotrienes, and inflammation. N Engl J Med. 2004;350(1):4–7. doi: 10.1056/NEJMp038190.
  73. 73.
    Crosslin DR, Shah SH, Nelson SC, Haynes CS, Connelly JJ, Gadson S, et al. Genetic effects in the leukotriene biosynthesis pathway and association with atherosclerosis. Hum Genet. 2009;125(2):217–29. doi: 10.1007/s00439-008-0619-0.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Yang LX, Heng XH, Guo RW, Si YK, Qi F, Zhou XB. Atorvastatin inhibits the 5-lipoxygenase pathway and expression of CCL3 to alleviate atherosclerotic lesions in atherosclerotic ApoE knockout mice. J Cardiovasc Pharmacol. 2013;62(2):205–11. doi: 10.1097/FJC.0b013e3182967fc0.CrossRefPubMedGoogle Scholar
  75. 75.
    Back M. Inhibitors of the 5-lipoxygenase pathway in atherosclerosis. Curr Pharm Des. 2009;15(27):3116–32.CrossRefPubMedGoogle Scholar
  76. 76.
    Kim JK, Jeong JH, Song YR, Kim HJ, Lee WY, Kim KI, et al. Obesity-related decrease in intraoperative blood flow is associated with maturation failure of radiocephalic arteriovenous fistula. J Vasc Surg. 2015. doi: 10.1016/j.jvs.2015.05.008.PubMedCentralGoogle Scholar
  77. 77.
    Bai Y, Zhang J, Xu J, Cui L, Zhang H, Zhang S. Alteration of type I collagen in the radial artery of patients with end-stage renal disease. Am J Med Sci. 2015;349(4):292–7. doi: 10.1097/maj.0000000000000408.CrossRefPubMedGoogle Scholar
  78. 78.
    Rekhter MD, Zhang K, Narayanan AS, Phan S, Schork MA, Gordon D. Type I collagen gene expression in human atherosclerosis. Localization to specific plaque regions. Am J Pathol. 1993;143(6):1634–48.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Fassett RG, Robertson IK, Ball MJ, Geraghty DP, Coombes JS. Effects of atorvastatin on oxidative stress in chronic kidney disease. Nephrology (Carlton). 2015. doi: 10.1111/nep.12502.Google Scholar
  80. 80.
    Kadowaki D, Anraku M, Sakaya M, Hirata S, Maruyama T, Otagiri M. Olmesartan protects endothelial cells against oxidative stress-mediated cellular injury. Clin Exp Nephrol. 2015. doi: 10.1007/s10157-015-1111-5.PubMedGoogle Scholar
  81. 81.
    Zhang L, Coombes J, Pascoe EM, Badve SV, Dalziel K, Cass A, et al. The effect of pentoxifylline on oxidative stress in chronic kidney disease patients with erythropoiesis-stimulating agent hyporesponsiveness: sub-study of the HERO trial. Redox Rep. 2015. doi: 10.1179/1351000215y.0000000022.PubMedGoogle Scholar
  82. 82.
    DuPont JJ, Ramick MG, Farquhar WB, Townsend RR, Edwards DG. NADPH oxidase-derived reactive oxygen species contribute to impaired cutaneous microvascular function in chronic kidney disease. Am J Physiol Renal Physiol. 2014;306(12):F1499–506. doi: 10.1152/ajprenal.00058.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hruska KA, Mathew S, Memon I, Saab G. The pathogenesis of vascular calcification in the chronic kidney disease mineral bone disorder (CKD-MBD): the links between bone and the vasculature. Semin Nephrol. 2009;29(2):156–65. doi: 10.1016/j.semnephrol.2009.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Yamanouchi D, Takei Y, Komori K. Balanced mineralization in the arterial system: possible role of osteoclastogenesis/osteoblastogenesis in abdominal aortic aneurysm and stenotic disease. Circ J. 2012;76(12):2732–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Vascular and Interventional Radiology Translational LaboratoryMayo ClinicRochesterUSA
  2. 2.Division of Vascular and Interventional Radiology, Department of RadiologyMayo ClinicRochesterUSA

Personalised recommendations