Skip to main content

Starter Cultures

  • Chapter
  • First Online:
Fundamentals of Cheese Science

Summary

In this chapter, the various types of starters, viz., mesophilic, thermophilic, defined- and mixed-strain, natural cultures, etc. and the analysis of these cultures by molecular approaches are considered. Then, the taxonomy and phylogeny of the important species of Lactococcus, Streptococcus, Leuconostoc, Lactobacillus and Enterococcus found in different cultures are analysed. Proteolysis and transport of the amino acids and peptides produced from it are important for the growth of starters in milk. The important pathways used by different starters to transport and metabolise arginine, lactose and citrate are treated. Respiration can be undertaken by lactococci but not by streptococci or lactobacilli and could be important in retaining activity when growing cultures in cheese plants. Some details are given on exopolysaccaharide production, the importance of plasmids and genome sequences. Major consideration is given to the importance of phage in inhibiting cultures, the sources of phage and how they may be controlled in cheese factories, and phage-resistance mechanisms. The production and role of bacteriocins in controlling spoilage and pathogens, which are common in lactic acid bacteria is considered. Finally, the production of starters in cheese plants is detailed and a summary of the use of frozen cultures which can be added directly to the milk in the cheese vat is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

  • Bolotin A, Wincker P, Mauger S et al (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL 1403. Gene Res 11:731–753

    Article  CAS  Google Scholar 

  • Briggiler M, Moineau S, Quiberoni A (2012) Bacteriophages and dairy fermentations. Bacteriophage 2:149–157

    Article  Google Scholar 

  • Callanan MJ, Ross RP (2004) Starter cultures: genetics. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: Physics, Chemistry and Microbiology, vol 1, 3rd edn. Elsevier, London, pp 149–162

    Chapter  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity in food. Nat Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  • de Vin F, Radstrom P, Herman L et al (2005) Molecular and biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles. Appl Environ Microbiol 71:3659–3667

    Article  Google Scholar 

  • Drider D, Fimland G, Héchard Y et al (2006) The continuing story of Class IIa bacteriocins. Microbiol Mol Rev 70:564–582

    Article  CAS  Google Scholar 

  • Dufour A, Hindré T, Haras D et al (2007) The biology of lantibiotics from the lantocin 481 group is coming of age. FEMS Microbiol Rev 31:134–167

    Article  CAS  Google Scholar 

  • Erkus O, de Jager VCL, Spus M et al (2013) Multifactorial diversity sutains microbial community stability. ISME J 7:2126–2136

    Article  CAS  Google Scholar 

  • Franz CMAP, Stiles ME, Schlifer KH et al (2003) Enterococci in foods – a conundrum for food safety. Int J Food Microbiol 88:103–122

    Article  Google Scholar 

  • Ganesan B, Stuart MR, Weimer BC (2007) Carbohydrate starvation causes a meatabolically active but nonculturable state in Lactococcus lactis. J Bacteriol 73:3498–2512

    Google Scholar 

  • Garneau JE, Moineau S (2011) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microbial Cell Fact 10(Suppl 1):S20

    Google Scholar 

  • Gaudu P, Vido K, Cesselin B et al (2002) Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82:263–269

    Article  CAS  Google Scholar 

  • Jenkins JK, Harper WJ, Courtney PD (2002) Genetic diversity in Swiss cheese starter cultures assessed by pulsed field gel electrophoresis and arbitrarily primed PCR Lett Appl Microbiol 35, 423–427

    Google Scholar 

  • Kelly WJ, Ward LJH, Leahy SC (2010) Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures. Genome Biol Evol 2:729–744

    Google Scholar 

  • Kok J, Kunji E, Steele J et al (2011) Protein breakdown by lactic acid bacteria. In: Bingham M (ed) Thirty Years of Research on Lactic Acid Bacteria, 24 Media Labs, The Netherlands

    Google Scholar 

  • Mahony J, Murphy J, van Sinderen D (2012) Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 3:335–335

    Article  Google Scholar 

  • Mahony J, Bottacini F, van Sinderen D et al (2014) Progress in lactic acid bacterial research. Microbial Cell Fact 13(Suppl 1):S1

    Article  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Article  Google Scholar 

  • McGrath S, van Sinderen D (2007) Bacteriophage. Genetics and Molecular Biology. Caister Academic Press, Norfolk, UK

    Google Scholar 

  • Parente E, Cogan TM (2004) Starter cultures: general aspects. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: Physics, Chemistry and Microbiology, vol 1, 3rd edn. Elsevier, London, pp 123–148

    Chapter  Google Scholar 

  • Pedersen MB, Iversen SL, Sorensen KI et al (2005) The long and winding road from the research laboratory to industrial application of lactic acid bacteria. FEMS Microbiol Rev 29:611–624

    Article  CAS  Google Scholar 

  • Poolman B, Jensen PR, Gruss A (2011) LAB physiology and energy metabolism. In: Bingham M (ed) Thirty Years of Research on Lactic Acid Bacteria. 24 Media Labs, The Netherlands

    Google Scholar 

  • Schleifer KH, Kilpper-Balz R (1987) Molecular and chemotaxonomic approaches to the classifica-tion of streptococci, enterococci and lactococci: a review. Syst Appl Microbiol 10:1–9

    Article  CAS  Google Scholar 

  • Smid EJ, Erkus O, Spus M et al (2014) Functional implications of the microbial community structure of undefined mesophilic starter cultures. Microb Cell Fact 13(Suppl 1):S2

    Article  Google Scholar 

  • Sun Z, Chen X, Wang J et al (2011a) Complete genome sequence of Streptococcus thermophilus strain ND03. J Bacteriol 193:793–794

    Article  CAS  Google Scholar 

  • Sun Z, Chen X, Wang J et al (2011b) Complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus strain ND02. J Bacteriol 193:3426–3427

    Article  CAS  Google Scholar 

  • Twomey D, Ross RP, Ryan M et al (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82:165–185

    Article  CAS  Google Scholar 

  • Wegmann U, O’Connell-Motherway M, Zomer A et al (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis MG 1363. J Bacteriol 189:3256–3270

    Article  CAS  Google Scholar 

References

  • Accolas JP, Veaux M, Auclair J (1971) Etude des interactions entre diverse bactéries lactiques thermophiles et mésophiles, en relation avec la fabrication des fromages à pâte cuite. Lait 51:249–272

    Article  CAS  Google Scholar 

  • Binetti AG, Reinheimer JA (2000) Thermal and chemical inactivation of indigenous Streptococcus thermophilus bacteriophage isolated from Argentinian dairy plants. J Food Prot 63:509–516

    CAS  Google Scholar 

  • Broadbent JR, Steele JL (2005) Cheese flavour and the genomics of lactic acid bacteria. ASM News 71:121–128

    Google Scholar 

  • Christensen JE, Dudley EG, Pedersen JA et al (1999) Peptidases and amino acid catabolism in lactic acid bacteria Ant v Leewenhoek 76: 217–246

    Google Scholar 

  • Christensen JK, Hughes JE, Welker DL et al (2008) Phenotypic and genotypic analysis of amino acid auxotrophy in Lactobacillus helveticus CNRZ 32. Appl Environ Microbiol 74:416–413

    Article  Google Scholar 

  • Cibik R, Lepage E, Taillez P (2000) Molecular diversity of Leuconostoc mesenteroides and Leuconostoc citreum isolated from tradional French cheeses as revealed by RAPD fingerprinting, 16srRNA sequencing and 16srDNA fragment amplification. Syst Appl Microbiol 23:267–278

    Article  CAS  Google Scholar 

  • Cogan TM (1972) Susceptibility of cheese and yoghurt starter bacteria to antibiotics. Appl Microbiol 23:960–965

    CAS  Google Scholar 

  • Cooper RK, Collins EB (1978) Influences of temperature on growth of Leuconostoc cremoris. J Dairy Sci 61:1085–1088

    Article  Google Scholar 

  • de Vuyst L, Tsakalidou E (2008) Streptococcus macedonicus, a multifunctional and promising species for dairy fermentations. Int Dairy J 18:476–485

    Article  Google Scholar 

  • de Vuyst L, de Vin F, Vaningelgem F et al (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–707

    Article  Google Scholar 

  • de Vuyst L, Weckx S, Ravyts F et al (2011) New insights into the exopolysaccccharide production of Streptococcus thermophilus. Int Dairy J 21:586-591-109.

    Google Scholar 

  • Emond E, Moineau S (2007) Bacteriophages and food fermentations. In: McGrath S, van Sinderen D (eds) Bacteriophage. Genetics and Molecular Biology. Caister Academic Press, Norfolk UK

    Google Scholar 

  • Fontaine L, Hols P (2008) The inhibitory spectrum of Thermophilin 9 from Streptococcus ther-mophilus LMD-9 depends on the production of multiple peptides and the activity of BlpGs1, a thiol-disulphide oxidase. Appl Environ Microbiol 74:1102–1110

    Article  CAS  Google Scholar 

  • Fortina M, Ricci G, Mora D et al (2004) Molecular analysis of artisanal Italian cheeses reveals Enterococcus italicus sp.nov. Int J Syst Evol Microbiol 54:1717–1721

    Article  CAS  Google Scholar 

  • Gálvez A, López RL, Abriouel H (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol 28:125–152

    Article  Google Scholar 

  • Garvie EI, Farrow JAE (1982) Streptococcus lactis subsp. cremoris (Orla-Jensen) comb. Nov. and Streptococcus lactis subsp. diacetilactis (Matuszewski et al.) nom. rev., comb. nov. Int J Syst Bacteriol 32:453–455

    Article  Google Scholar 

  • Goupil N, Corthier G, Ehrlich SD et al (1996) Imbalance of leucine flux in Lactococcus lactis and its use for the isolation of diacetyl overproducing strains. Appl Environ Microbiol 62:2636–2640

    CAS  Google Scholar 

  • Hassan AN (2008) Possibilities and challenges of exopolysaccharide producing lactic cultures in dairy foods. J Dairy Sci 91:1282–1298

    Article  CAS  Google Scholar 

  • Heap HA, Lawrence RC (1976) The selection of starter strains for cheesemaking. N Z J Dairy Sci Technol 11:16–20

    Google Scholar 

  • Josephsen J, Petersen A, Neve H et al (1999) Development of lytic Lactococcus lactis bacteriophages in a Cheddar cheese plant. Int J Food Microbiol 50:163–171

    Article  CAS  Google Scholar 

  • Kahala M, Maki M, Lehtovaara A et al (2008) Characterisation of starter lactic acid bacteria from the Finnish milk product Viili. J Appl Microbiol 105:1929–1938

    Article  CAS  Google Scholar 

  • Kelly WJ, Altermann E, Lambie SC et al (2013) Interaction between the genomes of Lactococcus lactis and phages of the P335 species. Frontiers Microbiol 4:1–9

    Article  Google Scholar 

  • Khan H, Flint S, Yu PL (2010) Enterocins in food preservation. Int J Food Microbiol 141:1–10

    Article  CAS  Google Scholar 

  • Klaenhammer TR (1989) Genetic characterization of multiple mechanisms of phage defense froma prototype phage-insensitive strain, Lactococcus lactis ME2. J Dairy Sci 72:3429–3443

    Article  CAS  Google Scholar 

  • Kunji ERS, Mierau I, Hagting A et al (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  CAS  Google Scholar 

  • Lee DA, Collins EB (1976) Influence of temperature on growth of Streptococcus cremoris and Streptococcus lactis. J Dairy Sci 59:405–409

    Article  Google Scholar 

  • Marciset O, Jeronimus-Stratingh MC, Mollet B et al (1997) Thermophilin 13, a non typical antilisterial poration complex bacteriocin, that functions without a receptor. J Biol Chem 272:14277–14284

    Article  CAS  Google Scholar 

  • Martley FG (1983) Temperature sensitivities of thermophilic starter strains. N Z J Dairy Sci Technol 18:191–196

    Google Scholar 

  • McGrath S, Fitzgerald GF, van Sindern D (2004) Starter cultures: bacteriophage. In: Fox PF, McSweeney PLH, Cogan TM et al (eds) Cheese: Physics, Chemistry and Microbiology, vol 1, 3rd edn. Elsevier Academic Press, Oxford, pp 163–190

    Chapter  Google Scholar 

  • Morandi S, Crmonesi P, Povolo M et al (2012) Enterococcus lactis sp.nov., from Italian raw milk cheeses. Int J Syst Evol Microbiol 62:1992–1996

    Article  CAS  Google Scholar 

  • Neve H (1996) Bacteriophage. In: Cogan TM, Accolas JP (eds) Dairy Starter Cultures. VCH, New York

    Google Scholar 

  • Neviani E, Bottari B, Lazzi C et al (2013) New developments in the study of the microbiota of raw milk, long-ripened cheeses by molecular methods: the case of Grana Padano and Parmigiano Reggiano. Front Microbiol 4:1–14

    Article  Google Scholar 

  • Nissen-Meyer J, Oppegord C, Rogne P et al (2010) Structure and mode of action of the two peptide (Class-IIb) bacteriocins. Probiot Antimicrb Prot 2:52–60

    Article  CAS  Google Scholar 

  • Nomura M, Kimoto H, Someya Y et al (1999) Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris. Int J Syst Bacteriol 49:163–166

    Article  Google Scholar 

  • Pearce LE, Limsowtin GKY, Crawford A (1970) Bacteriophage multiplication characteristics in Cheddar cheesemaking. N Z J Dairy Sci Technol 5:145–150

    Google Scholar 

  • Perez G, Cardell E, Zarate V (2002) Random amplified polymorphic DNA analysis for differentiation of Leuconostoc mesenteroides subspecies isolated from Tenerife cheese. Lett Appl Microbiol 34:82–85

    Article  CAS  Google Scholar 

  • Poolman B (1993) Energy transduction in lactic acid bacteria. FEMS Microbiol Rev 12:125–148

    Article  CAS  Google Scholar 

  • Poolman B (2002) Tranporters and their roles in LAB cell physiology. Antonie Van Leeuwenhoek 82:147–164

    Article  CAS  Google Scholar 

  • Quiberoni A, Suarez VB, Reinheimer JA (1999) Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments. J Food Prot 62:894–898

    CAS  Google Scholar 

  • Salama MS, Sandine WE, Giovannoni SJ (1993) Isolation of Lactococcus lactis subsp. cremoris from nature by colony hybridization with rRNA probes. Appl Environ Microbiol 59:3941–3945

    CAS  Google Scholar 

  • Schleifer KH, Kraus J, Dvorak C et al (1985) Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol 6:183–195

    Article  CAS  Google Scholar 

  • Shimizu-Kadota M, Sakurai T, Tsuchida N (1983) Prophage origin of virulent phage appearing on fermentations of Lactobacillus casei S-1. Appl Environ Microbiol 45:669–674

    CAS  Google Scholar 

  • Siezen RJ, Bayjanov J, Renckens B et al (2010) Complete genome sequence of Lactococcus lactis subsp. lactis KF147, a plant associated lactic acid bacterium. J Bacteriol 192:2649–2650

    Article  CAS  Google Scholar 

  • Sieuwerts S, Molenaar D, Sacha AFT et al (2010) Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl Environ Microbiol 76:7775–7784

    Article  CAS  Google Scholar 

  • Taillez P, Tremblay J, Ehrlich SD et al (1998) Molecular diversity and relationships within Lactococcus lactis as revealed by randomly amplified polymorphic DNA (RAPD). Syst Appl Microbiol 21:530–538

    Article  Google Scholar 

  • Ward LJH, Heap HA, Kelly WJ (2004) Characterization of closely reated lactococcal starter strains which show differing patterns of bacteriophage sensitivity. J Appl Microbiol 96:1440–148

    Article  Google Scholar 

  • Wouters JTM, Ayad EHE, Hugenholtz J et al (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12:91–109

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Jenny Mahony for her suggestions on the phage aspects of this chapter.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer New York

About this chapter

Cite this chapter

Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H. (2017). Starter Cultures. In: Fundamentals of Cheese Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7681-9_6

Download citation

Publish with us

Policies and ethics