Skip to main content
Book cover

Hypoxia pp 101–112Cite as

Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 903))

Abstract

Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The “strength” of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baker PT. Human adaptation to high altitude. Science. 1969;163:1149–56.

    Article  CAS  PubMed  Google Scholar 

  2. Baker PT. Work performance of highland natives. In: Baker PT, Little MA, editors. Man in the Andes: a multidisciplinary study of high-altitude Quechua natives. Stroudsburg, PA: Wowden, Hutchinson, and Ross, Inc.; 1976.

    Google Scholar 

  3. Bartlett Jr D, Remmers JE. Effects of high altitude exposure on the lungs of young rats. Respir Physiol. 1971;13:116–25.

    Article  PubMed  Google Scholar 

  4. Bavis RW. Developmental plasticity of the hypoxic ventilatory response after perinatal hyperoxia and hypoxia. Respir Physiol Neurobiol. 2005;149:287–99.

    Article  CAS  PubMed  Google Scholar 

  5. Beall CM, Song K, Elston RC, Goldstein MC. Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4,000 m. Proc Natl Acad Sci U S A. 2004;101:14300–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beall CM, Strohl KP, Blangero J, Williams-Blangero S, Almasy LA, Decker MJ, Worthman CM, Goldstein MC, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C. Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives. Am J Phys Anthropol. 1997;104:427–47.

    Article  CAS  PubMed  Google Scholar 

  7. Beall CM, Strohl KP, Blangero J, Williams-Blangero S, Decker MJ, Brittenham GM, Goldstein MC. Quantitative genetic analysis of arterial oxygen saturation in Tibetan highlanders. Hum Biol. 1997;69:597–604.

    CAS  PubMed  Google Scholar 

  8. Bigham AW, Kiyamu M, Leon-Velarde F, Parra EJ, Rivera-Ch M, Shriver MD, Brutsaert TD. Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt Med Biol. 2008;9:167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brody JS, Lahiri S, Simpser M, Motoyama EK, Velasquez T. Lung elasticity and airway dynamics in Peruvian natives to high altitude. J Appl Physiol. 1977;42:245–51.

    CAS  PubMed  Google Scholar 

  10. Brutsaert T, Parra E, Shriver M, Gamboa A, Palacios J, Rivera M, Rodriquez I, Leaon-Velarde F. Effects of birth place and individual admixture on lung volume and exercise phenotypes of Peruvian Quechua. Am J Phys Anthro. 2004;123:390–8.

    Article  Google Scholar 

  11. Brutsaert T, Parra E, Shriver M, Gamboa A, Palacios J, Rivera M, Rodriquez I, Leaon-Velarde F. Spanish genetic admixture is associated with larger VO2max decrement from sea level to 4.338 m in Peruvan Quechua. J Appl Physiol. 2003;95:519–28.

    Article  PubMed  Google Scholar 

  12. Brutsaert TD. Do high-altitude natives have enhanced exercise performance at altitude? Appl Physiol Nutr Metab. 2008;33:582–92.

    Article  CAS  PubMed  Google Scholar 

  13. Brutsaert TD, Araoz M, Soria R, Spielvogel H, Haas JD. Higher arterial oxygen saturation during submaximal exercise in Bolivian Aymara compared to European sojourners and Europeans born and raised at high altitude. Am J Phys Anthropol. 2000;113:169–81.

    Article  CAS  PubMed  Google Scholar 

  14. Brutsaert TD, Parra EJ. What makes a champion? Explaining variation in human athletic performance. Respir Physiol Neurobiol. 2006;151:109–23.

    Article  PubMed  Google Scholar 

  15. Brutsaert TD, Parra EJ, Shriver MD, Gamboa A, Rivera M, Leon-Velarde F. Ancestry explains the blunted ventilatory response to sustained hypoxia and lower exercise ventilation of Quechua altitude natives. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R225–34.

    Article  CAS  PubMed  Google Scholar 

  16. Brutsaert TD, Soria R, Caceres E, Spielvogel H, Haas JD. Effect of developmental and ancestral high altitude exposure on chest morphology and pulmonary function in Andean and European/North American natives. Am J Hum Biol. 1999;11:383–95.

    Article  PubMed  Google Scholar 

  17. Brutsaert TD, Spielvogel H, Soria R, Caceres E, Buzenet G, Haas JD. Effect of developmental and ancestral high-altitude exposure on VO2 peak of Andean and European/North American natives. Am J Phys Anthropol. 1999;110:435–55.

    Article  CAS  PubMed  Google Scholar 

  18. Burri PH, Weibel ER. Influence of environmental P-O2 on the growth of the pulmonary gas exchange apparatus. Chest. 1971;59(Suppl):25S+.

    Article  PubMed  Google Scholar 

  19. Burri PH, Weibel ER. Morphometric estimation of pulmonary diffusion capacity. II. Effect of Po2 on the growing lung, adaption of the growing rat lung to hypoxia and hyperoxia. Respir Physiol. 1971;11:247–64.

    Article  CAS  PubMed  Google Scholar 

  20. Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP. Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol. 1967;23:259–66.

    CAS  PubMed  Google Scholar 

  21. Carroll JL. Developmental plasticity in respiratory control. J Appl Physiol. 2003;94:375–89.

    Article  CAS  PubMed  Google Scholar 

  22. Cerny FC, Dempsey JA, Reddan WG. Pulmonary gas exchange in nonnative residents of high altitude. J Clin Invest. 1973;52:2993–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen QH, Ge RL, Wang XZ, Chen HX, Wu TY, Kobayashi T, Yoshimura K. Exercise performance of Tibetan and Han adolescents at altitudes of 3,417 and 4,300 m. J Appl Physiol. 1997;83:661–7.

    CAS  PubMed  Google Scholar 

  24. Curran LS, Zhuang J, Droma T, Moore LG. Superior exercise performance in lifelong Tibetan residents of 4,400 m compared with Tibetan residents of 3,658 m. Am J Phys Anthropol. 1998;105:21–31.

    Article  CAS  PubMed  Google Scholar 

  25. DeGraff Jr AC, Grover RF, Johnson Jr RL, Hammond Jr JW, Miller JM. Diffusing capacity of the lung in Caucasians native to 3,100 m. J Appl Physiol. 1970;29:71–6.

    PubMed  Google Scholar 

  26. Dempsey JA, Reddan WG, Birnbaum ML, Forster HV, Thoden JS, Grover RF, Rankin J. Effects of acute through life-long hypoxic exposure on exercise pulmonary gas exchange. Respir Physiol. 1971;13:62–89.

    Article  CAS  PubMed  Google Scholar 

  27. Dua GL, Sen Gupta J. A study of physical work capacity of sea level residents on prolonged stay at high altitude and comparison with high altitude native residents. Indian J Physiol Pharmacol. 1980;24:15–24.

    CAS  PubMed  Google Scholar 

  28. Elsner RW, Blostad A, Forno C. Maximum oxygen consumption of Peruvian Indians native to high altitude. In: Weihe WH, editor. The physiological effects of high altitude. New York: Pergamon Press; 1964. p. 217–23.

    Chapter  Google Scholar 

  29. Favier R, Spielvogel H, Desplanches D, Ferretti G, Kayser B, Hoppeler H. Maximal exercise performance in chronic hypoxia and acute normoxia in high-altitude natives. J Appl Physiol. 1995;78:1868–74.

    CAS  PubMed  Google Scholar 

  30. Frisancho AR, Frisancho HG, Albalak R, Villena M, Vargas E, Soria R. Developmental, genetic and environmental components of lung volumes at high altitude. Am J Hum Biol. 1997;9:191–203.

    Article  Google Scholar 

  31. Frisancho AR, Frisancho HG, Milotich M, Brutsaert T, Albalak R, Spielvogel H, Villena M, Vargas E, Soria R. Developmental, genetic, and environmental components of aerobic capacity at high altitude. Am J Phys Anthropol. 1995;96:431–42.

    Article  CAS  PubMed  Google Scholar 

  32. Frisancho AR, Martinez C, Velasquez T, Sanchez J, Montoye H. Influence of developmental adaptation on aerobic capacity at high altitude. J Appl Physiol. 1973;34:176–80.

    CAS  PubMed  Google Scholar 

  33. Frisancho AR, Velasquez T, Sanchez J. Influence of developmental adaptation on lung function at high altitude. Hum Biol. 1973;45:583–94.

    CAS  PubMed  Google Scholar 

  34. Gamboa A, Leon-Velarde F, Rivera-Ch M, Palacios JA, Pragnell TR, O’Connor DF, Robbins PA. Selected contribution: acute and sustained ventilatory responses to hypoxia in high-altitude natives living at sea level. J Appl Physiol. 2003;94:1255–62. discussion 1253–1254.

    Article  PubMed  Google Scholar 

  35. Ge RL, Chen QH, Wang LH, Gen D, Yang P, Kubo K, Fujimoto K, Matsuzawa Y, Yoshimura K, Takeoka M, et al. Higher exercise performance and lower VO2max in Tibetan than Han residents at 4,700 m altitude. J Appl Physiol. 1994;77:684–91.

    CAS  PubMed  Google Scholar 

  36. Ge RL, He Lun GW, Chen QH, Li HL, Gen D, Kubo K, Matsuzawa Y, Fujimoto K, Yoshimura K, Takeoka M, Kobayashi T. Comparisons of oxygen transport between Tibetan and Han residents at moderate altitude. Wilderness Environ Med. 1995;6:391–400.

    Article  Google Scholar 

  37. Gesang L, Liu G, Cen W, Qiu C, Zhuoma C, Zhuang L, Ren D, Pincuo Z, Chan Y. Angiotensin-converting enzyme gene polymorphism and its association with essential hypertension in a Tibetan population. Hypertens Res. 2002;25:481–5.

    Article  CAS  PubMed  Google Scholar 

  38. Greksa LP. Evidence for a genetic basis to the enhanced total lung capacity of Andean highlanders. Hum Biol. 1996;68:119–29.

    CAS  PubMed  Google Scholar 

  39. Greksa LP, Haas JD. Physical growth and maximal work capacity in preadolescent boys at high- altitude. Hum Biol. 1982;54:677–95.

    CAS  PubMed  Google Scholar 

  40. Greksa LP, Haas JD, Leatherman TL, Thomas RB, Spielvogel H. Work performance of high-altitude Aymara males. Ann Hum Biol. 1984;11:227–33.

    Article  CAS  PubMed  Google Scholar 

  41. Greksa LP, Spielvogel H, Caceres E. Total lung capacity in young highlanders of Aymara ancestry. Am J Phys Anthropol. 1994;94:477–86.

    Article  CAS  PubMed  Google Scholar 

  42. Greksa LP, Spielvogel H, Paredes-Fernandez L. Maximal exercise capacity in adolescent European and Amerindian high-altitude natives. Am J Phys Anthropol. 1985;67:209–16.

    Article  CAS  PubMed  Google Scholar 

  43. Grover RF, Johnson Jr RL, McCullough RG, McCullough RE, Hofmeister SE, Campbell WB, Reynolds RC. Pulmonary hypertension and pulmonary vascular reactivity in beagles at high altitude. J Appl Physiol. 1988;65:2632–40.

    CAS  PubMed  Google Scholar 

  44. Hochachka PW, Stanley C, Matheson GO, McKenzie DC, Allen PS, Parkhouse WS. Metabolic and work efficiencies during exercise in Andean natives. J Appl Physiol. 1991;70:1720–30.

    CAS  PubMed  Google Scholar 

  45. Hoff C. Altitudinal variations in the physical growth and development of Peruvian Quechua children. Homo. 1974;24:87–99.

    Google Scholar 

  46. Hsia CC, Carbayo JJ, Yan X, Bellotto DJ. Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude. Respir Physiol Neurobiol. 2005;147:105–15.

    Article  PubMed  Google Scholar 

  47. Hsia CC, Johnson Jr RL, McDonough P, Dane DM, Hurst MD, Fehmel JL, Wagner HE, Wagner PD. Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years. J Appl Physiol. 2007;102:1448–55.

    Article  PubMed  Google Scholar 

  48. Hurtado A. Animals at high altitudes: resident man. In: Dill DB, Adolph EF, Wiber CG, editors. Handbook of physiology, section 4, adaptation and environment. Washington, DC: American Physiological Society; 1964. p. 843–60.

    Google Scholar 

  49. Johnson Jr RL, Cassidy SS, Grover RF, Schutte JE, Epstein RH. Functional capacities of lungs and thorax in beagles after prolonged residence at 3,100 m. J Appl Physiol. 1985;59:1773–82.

    PubMed  Google Scholar 

  50. Jones RL, Man SF, Matheson GO, Parkhouse WS, Allen PS, McKenzie DC, Hochachka PW. Overall and regional lung function in Andean natives after descent to low altitude. Respir Physiol. 1992;87:11–24.

    Article  CAS  PubMed  Google Scholar 

  51. Kashiwazaki H, Dejima Y, Orias-Rivera J, Coward WA. Energy expenditure determined by the doubly labeled water method in Bolivian Aymara living in a high altitude agropastoral community. Am J Clin Nutr. 1995;62:901–10.

    CAS  PubMed  Google Scholar 

  52. Kollias J, Buskirk ER, Akers RF, Prokop EK, Baker PT, Picon-Reategui E. Work capacity of long-time residents and newcomers to altitude. J Appl Physiol. 1968;24:792–9.

    CAS  PubMed  Google Scholar 

  53. Lahiri S, Milledge JS. Muscular exercise in the Himalayan high-altitude residents. Fed Proc. 1966;25:1392–6.

    CAS  PubMed  Google Scholar 

  54. Lahiri S, Milledge JS, Chattopadhyay HP, Bhattacharyya AK, Sinha AK. Respiration and heart rate of Sherpa highlanders during exercise. J Appl Physiol. 1967;23:545–54.

    CAS  PubMed  Google Scholar 

  55. Lundby C, Calbet JA, van Hall G, Saltin B, Sander M. Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude Aymara natives. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1202–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lundby C, Sander M, van Hall G, Saltin B, Calbet JA. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives. J Physiol. 2006;573:535–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marconi C, Marzorati M, Grassi B, Basnyat B, Colombini A, Kayser B, Cerretelli P. Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians. J Physiol. 2004;556:661–71. Epub 2004 Feb 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mazess RB. Exercise performance at high altitude in Peru. Fed Proc. 1969;28:1301–6.

    CAS  PubMed  Google Scholar 

  59. Mazess RB. Exercise performance of Indian and white high altitude residents. Hum Biol. 1969;41:494–518.

    CAS  PubMed  Google Scholar 

  60. Monge C. Acclimatization in the Andes. Baltimore: The Johns Hopkins Press; 1948.

    Google Scholar 

  61. Moore LG. Human genetic adaptation to high altitude. High Alt Med Biol. 2001;2:257–79.

    Article  CAS  PubMed  Google Scholar 

  62. Niu W, Wu Y, Li B, Chen N, Song S. Effects of long-term acclimatization in lowlanders migrating to high altitude: comparison with high altitude residents. Eur J Appl Physiol. 1995;71:543–8.

    Article  CAS  Google Scholar 

  63. Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation. 2007;115:1132–46.

    Article  PubMed  Google Scholar 

  64. Qadar Pasha MA, Khan AP, Kumar R, Grover SK, Ram RB, Norboo T, Srivastava KK, Selvamurthy W, Brahmachari SK. Angiotensin converting enzyme insertion allele in relation to high altitude adaptation. Ann Hum Genet. 2001;65:531–6.

    Article  CAS  PubMed  Google Scholar 

  65. Remmers JE, Mithoefer JC. The carbon monoxide diffusing capacity in permanent residents at high altitude. Resp Physiol. 1969;6:233–44.

    Article  CAS  Google Scholar 

  66. Rupert JL, Devine DV, Monsalve MV, Hochachka PW. Angiotensin-converting enzyme (ACE) alleles in the Quechua, a high altitude South American native population. Ann Hum Biol. 1999;26:375–80.

    Article  CAS  PubMed  Google Scholar 

  67. Rupert JL, Koehle MS. Evidence for a genetic basis for altitude-related illness. High Alt Med Biol. 2006;7:150–67.

    Article  CAS  PubMed  Google Scholar 

  68. Schoene RB, Roach RC, Lahiri S, Peters RM, Hackett PH, Santolaya R. Increased diffusion capacity maintains arterial saturation during exercise in the Quechua Indians of the Chilean Altiplano. Am J Hum Bio. 1990;2:663–8.

    Article  Google Scholar 

  69. Sekhon HS, Thurlbeck WM. Lung growth in hypobaric normoxia, normobaric hypoxia, and hypobaric hypoxia in growing rats. I. Biochemistry. J Appl Physiol. 1995;78:124–31.

    CAS  PubMed  Google Scholar 

  70. Sekhon HS, Thurlbeck WM. Time course of lung growth following exposure to hypobaria and/or hypoxia in rats. Respir Physiol. 1996;105:241–52.

    Article  CAS  PubMed  Google Scholar 

  71. Shriver MD, Smith MW, Jin L, Marcini A, Akey JM, Deka R, Ferrell RE. Ethnic-affiliation estimation by use of population-specific DNA markers. Am J Hum Genet. 1997;60:957–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun SF, Droma TS, Zhang JG, Tao JX, Huang SY, McCullough RG, McCullough RE, Reeves CS, Reeves JT, Moore LG. Greater maximal O2 uptakes and vital capacities in Tibetan than Han residents of Lhasa. Respir Physiol. 1990;79:151–61.

    Article  CAS  PubMed  Google Scholar 

  73. Velasquez T. Acquired acclimatization to sea-level. In: Life at high altitudes. Washington DC: Pan American Health Organization, Scientific Publications; 1966. p. 58–63.

    Google Scholar 

  74. Vincent J, Hellot MF, Vargas E, Gautier H, Pasquis P, Lefrancois R. Pulmonary gas exchange, diffusing capacity in natives and newcomers at high altitude. Respir Physiol. 1978;34:219–31.

    Article  CAS  PubMed  Google Scholar 

  75. Vitzthum VJ, Wiley AS. The proximate determinants of fertility in populations exposed to chronic hypoxia. High Alt Med Biol. 2003;4:125–39.

    Article  PubMed  Google Scholar 

  76. Vogel JA, Hartley LH, Cruz JC. Cardiac output during exercise in altitude natives at sea level and high altitude. J Appl Physiol. 1974;36:173–6.

    CAS  PubMed  Google Scholar 

  77. Wagner PD, Araoz M, Boushel R, Calbet JA, Jessen B, Radegran G, Spielvogel H, Sondegaard H, Wagner H, Saltin B. Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. J Appl Physiol. 2002;92:1393–400.

    Article  PubMed  Google Scholar 

  78. Way AB. Exercise capacity of high altitude peruvian Quechua Indians migrant to low altitude. Hum Biol. 1976;48:175–91.

    CAS  PubMed  Google Scholar 

  79. Weitz CA, Garruto RM. A comparative analysis of arterial oxygen saturation among Tibetans and Han born and raised at high altitude. High Alt Med Biol. 2007;8:13–26.

    Article  PubMed  Google Scholar 

  80. Winslow RM, Chapman KW, Gibson CC, Samaja M, Monge CC, Goldwasser E, Sherpa M, Blume FD, Santolaya R. Different hematologic responses to hypoxia in Sherpas and Quechua Indians. J Appl Physiol. 1989;66:1561–9.

    CAS  PubMed  Google Scholar 

  81. Winslow RM, Monge CC, Statham NJ, Gibson CG, Charache S, Whittembury J, Moran O, Berger RL. Variability of oxygen affinity of blood: human subjects native to high altitude. J Appl Physiol. 1981;51:1411–6.

    CAS  PubMed  Google Scholar 

  82. Zamudio S, Moore LG. Altitude and fetal growth: current knowledge and future directions. High Alt Med Biol. 2002;3:39–47.

    Article  PubMed  Google Scholar 

  83. Zhuang J, Droma T, Sutton JR, Groves BM, McCullough RE, McCullough RG, Sun S, Moore LG. Smaller alveolar-arterial O2 gradients in Tibetan than Han residents of Lhasa (3658 m). Respir Physiol. 1996;103:75–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Brutsaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brutsaert, T. (2016). Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_7

Download citation

Publish with us

Policies and ethics