Skip to main content

Caudwell Xtreme Everest: An Overview

  • Chapter
  • First Online:
Hypoxia

Abstract

The Caudwell Xtreme Everest (CXE) expedition in the spring of 2007 systematically studied 222 healthy volunteers as they ascended from sea level to Everest Base Camp (5300 m). A subgroup of climbing investigators ascended higher on Everest and obtained physiological measurements up to an altitude of 8400 m. The aim of the study was to explore inter-individual variation in response to environmental hypobaric hypoxia in order to understand better the pathophysiology of critically ill patients and other patients in whom hypoxaemia and cellular hypoxia are prevalent. This paper describes the aims, study characteristics, organization and management of the CXE expedition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grocott M, Richardson A, Montgomery H, Mythen M. Caudwell Xtreme Everest: a field study of human adaptation to hypoxia. Crit Care. 2007;11:151.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grocott M, Montgomery H, Vercueil A. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Crit Care. 2007;11:203.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grocott MP. Human physiology in extreme environments: lessons from life at the limits? Postgrad Med J. 2008;84:2–3.

    Article  PubMed  Google Scholar 

  4. Cymerman A, Reeves JT, Sutton JR, et al. Operation Everest II: maximal oxygen uptake at extreme altitude. J Appl Physiol. 1989;66:2446–53.

    Article  CAS  PubMed  Google Scholar 

  5. Howald H, Hoppeler H. Performing at extreme altitude: muscle cellular and subcellular adaptations. Eur J Appl Physiol. 2003;90:360–4.

    Article  PubMed  Google Scholar 

  6. Winslow RM, Samaja M, West JB. Red cell function at extreme altitude on Mount Everest. J Appl Physiol. 1984;56:109–16.

    CAS  PubMed  Google Scholar 

  7. West JB, Boyer SJ, Graber DJ, et al. Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol. 1983;55:688–98.

    CAS  PubMed  Google Scholar 

  8. Sutton JR, Reeves JT, Wagner PD, et al. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol. 1988;64:1309–21.

    CAS  PubMed  Google Scholar 

  9. Grocott M, Montgomery H. Genetophysiology: using genetic strategies to explore hypoxic adaptation. High Alt Med Biol. 2008;9:123–9.

    Article  CAS  PubMed  Google Scholar 

  10. Huey RB, Eguskitza X. Supplemental oxygen and mountaineer death rates on Everest and K2. JAMA. 2000;284:181.

    Article  CAS  PubMed  Google Scholar 

  11. Levett DZH, Martin DS, Wilson MH, et al. Design and conduct of Caudwell Xtreme Everest: an observational cohort study of variation in human adaptation to progressive environmental hypoxia. BMC Med Res Methodol. 2010;10:98.

    Article  PubMed  PubMed Central  Google Scholar 

  12. West JB. The Silver Hut expedition. High Alt Med Biol. 2001;2:311–3.

    Article  CAS  PubMed  Google Scholar 

  13. Cerretelli P. Oxidative and anaerobic metabolism in subject acclimatized to altitude. Experimental studies in course of the Italian expedition to Everest. Minerva Med. 1976;67:2331–46.

    CAS  PubMed  Google Scholar 

  14. West JB. American Medical Research Expedition, to Everest, 1981. Physiologist. 1982;25:36–8.

    CAS  PubMed  Google Scholar 

  15. Woods DR, Pollard AJ, Collier DJ, et al. Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene and arterial oxygen saturation at high altitude. Am J Respir Crit Care Med. 2002;166:362–6.

    Article  PubMed  Google Scholar 

  16. West JB, Hackett PH, Maret KH, et al. Pulmonary gas exchange on the summit of Mount Everest. J Appl Physiol. 1983;55:678–87.

    CAS  PubMed  Google Scholar 

  17. Peacock AJ, Jones PL. Gas exchange at extreme altitude: results from the British 40th Anniversary Everest Expedition. Eur Respir J. 1997;10:1439–44.

    Article  CAS  PubMed  Google Scholar 

  18. Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med. 2009;360:140–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wilson MH, Edsell M. Davagnanam et al. Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia – an ultrasound and MRI study. J Cereb Blood Flow Metab. 2011;31(10):2019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin DS, Goedhart P, Vercueil A, et al. Changes in sublingual microcirculatory flow index and vessel density on ascent to altitude. Exp Physiol. 2010;95(8):880–91.

    Article  PubMed  Google Scholar 

  21. Scrase E, Laverty A, Gavlak JC, et al. The Young Everest Study: effects of hypoxia at high altitude on cardio-respiratory function and general well-being in healthy children. Archiv Dis Child. 2009;94(8):621–6.

    Article  CAS  Google Scholar 

  22. Gavlak JC, Stocks J, Laverty A, et al. The Young Everest Study: preliminary report of changes in sleep and cerebral blood flow velocity during slow ascent to altitude in unacclimatised children. Archiv Dis Child. 2013;98(5):356–62.

    Article  Google Scholar 

  23. Martin DS, Gilbert-Kawai ET, Meale PM, et al. Design and conduct of ‘Xtreme Alps’: a double-blind, randomised controlled study of the effects of dietary nitrate supplementation on acclimatisation to high altitude. Contemp Clin Trials. 2013;36(2):450–9.

    Article  PubMed  Google Scholar 

  24. Gilbert-Kawai E, Sheperdigian A, Adams T, et al. Design and conduct of Xtreme Everest 2: an observational cohort study of Sherpa and lowlander responses to graduated hypobaric hypoxia. F1000Res. 2015;4:90.

    PubMed  PubMed Central  Google Scholar 

  25. Wilson M, Davagnanam I, Holland G, et al. The cerebral venous system and anatomical predisposition to high altitude headache. Ann Neurol. 2013;73(3):381–9.

    Article  PubMed  Google Scholar 

  26. Martin D, Levett DZH, Mythen M, et al. Changes in skeletal muscle oxygenation during exercise measured by near infra-red spectroscopy on ascent to altitude. Crit Care. 2009;13 Suppl 5:S7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martin DS, Pate JS, Vercueil A, et al. Reduced coagulation at high altitude identified by thromboelastography. Thromb Haemost. 2012;107(6):1066–71.

    Article  CAS  PubMed  Google Scholar 

  28. Edwards LM, Murray AJ, Tyler DJ, et al. The effect of high-altitude on human skeletal muscle energetics: 31P-MRS results from the Caudwell Xtreme Everest expedition. PLoS One. 2010;5(5):e10681.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Holloway CJ, Montgomery HE, Murray AJ, et al. The Cardiac Response to Hypobaric Hypoxia: persistent changes to cardiac mass, function and energy metabolism after a trek to Mt Everest Base Camp. FASEB J. 2011;25(2):792–6.

    Article  CAS  PubMed  Google Scholar 

  30. Levett DZ, Radford EJ, Menassa DA, et al. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J. 2012;26(4):1431–41.

    Article  CAS  PubMed  Google Scholar 

  31. Levett DZ, Fernandez BO, Riley HL, et al. The role of nitrogen oxides in human adaptation to hypoxia. Sci Rep. 2011;1:109.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Siervo M, Riley HL, Fernandez BO, et al. Effects of prolonged exposure to hypobaric hypoxia on oxidative stress, inflammation and gluco-insular regulation: the not-so-sweet price for good regulation. PLoS One. 2014;9(4):e94915.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Levett DZ, Viganò A, Capitanio D, et al. Changes in muscle proteomics in the course of the Caudwell Research Expedition to Mt. Everest. Proteomics. 2015;15(1):160–71.

    Article  CAS  PubMed  Google Scholar 

  34. McMorrow RC, Windsor JS, Mythen MG, et al. A novel ambulatory closed circuit breathing system for use during exercise. Anaesthesia. 2011;66(5):348–53.

    Article  CAS  PubMed  Google Scholar 

  35. McMorrow RC, Windsor JS, Hart ND, et al. Closed and open breathing circuit function in healthy volunteers during exercise at Mount Everest base camp (5300 m). Anaesthesia. 2012;67(8):875–80.

    Article  CAS  PubMed  Google Scholar 

  36. Windsor JS, Rodway GW. Supplemental oxygen effects on ventilation in acclimatized subjects exercising at 5700 m altitude. Aviat Space Environ Med. 2007;78:426–9.

    PubMed  Google Scholar 

  37. Rodway GW, Windsor JS, Hart ND. Supplemental oxygen and hyperbaric treatment at high altitude: cardiac and respiratory response. Aviat Space Environ Med. 2007;78:613–7.

    PubMed  Google Scholar 

  38. Martin DS, Ince C, Goedhart P, Levett DZ, Grocott MP. Abnormal blood flow in the sublingual microcirculation at high altitude. Eur J Appl Physiol. 2009;106:473.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. W. Grocott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grocott, M.P.W. et al. (2016). Caudwell Xtreme Everest: An Overview. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_28

Download citation

Publish with us

Policies and ethics