Skip to main content

Does the Sympathetic Nervous System Adapt to Chronic Altitude Exposure?

  • Chapter
  • First Online:
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 903))

Abstract

During continued exposure to hypobaric hypoxia in acclimatizing lowlanders increasing norepinephrine levels indirectly indicate sympathoexcitation, and in a few subjects serial measurements have suggested some adaptation over time. A few studies have provided direct microneurographic evidence for markedly increased muscle sympathetic nervous activity (MSNA) after 1–50 days of exposure of lowlanders to altitudes of 4100–5260 m above sea level. Only one study has provided two MSNA-measurements over time (10 and 50 days) in altitude (4100 m above sea level) and continued robust sympathoexcitation without adaptation was found in acclimatizing lowlanders. In this study, norepinephrine levels during rest and exercise also remained highly elevated over time. In comparison, acute exposure to hypoxic breathing (FiO2 0.126) at sea level caused no change in sympathetic nervous activity, although the same oxygen saturation in arterial blood (around 90 %) was present during acute (FiO2 0.126) and chronic hypoxic exposure (4100 m above sea level). These findings strongly suggest that the chemoreflex-mechanisms underlying acute hypoxia-induced increases in MSNA are sensitized over time. Collectively, the MSNA data suggests that sensitization of the sympathoexcitatory chemoreflex is evident but not complete within the first 24 h, but is complete after 10 days of altitude exposure. After return from high altitude to sea level the MSNA remains significantly elevated for at least 5 days but completely normalized after 3 months. The few MSNA measurements in high altitude natives have documented high sympathetic activity in all subjects studied. Because serial measurements of MSNA in high altitude natives during sea level exposure are lacking, it is unclear whether the sympathetic nervous system have somehow adapted to lifelong altitude exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand IS, Chandrashekhar Y, Rao SK, Malhotra RM, Ferrari R, Chandana J, Ramesh B, Shetty KJ, Boparai MS. Body fluid compartments, renal blood flow, and hormones at 6,000 m in normal subjects. J Appl Physiol. 1993;74(3):1234–9.

    CAS  PubMed  Google Scholar 

  2. Antezana AM, Kacimi R, Le Trong JL, Marchal M, Abousahl I, Dubray C, Richalet JP. Adrenergic status of humans during prolonged exposure to the altitude of 6,542 m. J Appl Physiol. 1994;76(3):1055–9.

    CAS  PubMed  Google Scholar 

  3. Ballanyi K, Doutheil J, Brockhaus J. Membrane potentials and microenvironment of rat dorsal vagal cells in vitro during energy depletion. J Physiol. 1996;495(Pt 3):769–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barnard P, Andronikou S, Pokorski M, Smatresk N, Mokashi A, Lahiri S. Time-dependent effect of hypoxia on carotid body chemosensory function. J Appl Physiol. 1987;63:685–91.

    CAS  PubMed  Google Scholar 

  5. Bao G, Randhawa PM, Fletcher EC. Acute blood pressure elevation during repetitive hypocapnic and eucapnic hypoxia in rats. J Appl Physiol. 1997;82(4):1071–8.

    CAS  PubMed  Google Scholar 

  6. Beall CM, Strohl KP, Blangero J, Williams-Blangero S, Almasy LA, Decker MJ, Worthman CM, Goldstein MC, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C. Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives. Am J Phys Anthropol. 1997;104(4):427–47.

    Article  CAS  PubMed  Google Scholar 

  7. Bongianni F, Corda M, Fontana GA, Pantaleo T. Reciprocal connections between rostral ventrolateral medulla and inspiration-related medullary areas in the cat. Brain Res. 1991;565(1):171–4.

    Article  CAS  PubMed  Google Scholar 

  8. Bonora M, Vizek M. Lung mechanics and end-expiratory lung volume during hypoxia in rats. J Appl Physiol. 1999;87(1):15–21.

    CAS  PubMed  Google Scholar 

  9. Boushel R, Calbet J-AL, Radegran G, Sondergaard H, Wagner PD, Saltin B. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation. 2001;104:1785–91.

    Article  CAS  PubMed  Google Scholar 

  10. Braga VA, Soriano RN, Braccialli AL, de Paula PM, Bonagamba LG, Paton JF, Machado BH. Involvement of L-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J Physiol. 2007;581(1 Pt 3):1129–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brice AG, Forster HV, Pan LG, Lowry TF, Murphy CL. Respiratory muscle electromyogram responses to acute hypoxia in awake ponies. J Appl Physiol. 1990;68(3):1024–32.

    CAS  PubMed  Google Scholar 

  12. Calbet J-AL. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol. 2003;551(Pt 1):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chamberlin NL, Saper CB. Topographic organization of respiratory responses to glutamate microstimulation of the parabrachial nucleus in the rat. J Neurosci. 1994;14(11 Pt 1):6500–10.

    CAS  PubMed  Google Scholar 

  14. Chen J, He L, Dinger B, Stensaas L, Fidone S. Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2002;282:L1314–23.

    Article  CAS  PubMed  Google Scholar 

  15. Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, Ruan HZ, Ma B, Yip P, Nunn P, McMahon SB, Burnstock G, Ford AP. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol. 2005;567:621–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohn HE, Piasecki GJ, Jackson BT. The effect of fetal heart rate on cardiovascular function during hypoxemia. Am J Obstet Gynecol. 1980;138(8):1190–9.

    CAS  PubMed  Google Scholar 

  17. Costa-Silva JH, Zoccal DB, Machado BH. Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation. J Neurophysiol. 2010;103(4):2095–106.

    Article  CAS  PubMed  Google Scholar 

  18. Cunningham WL, Becker EJ, Kreuzer F. Catecholamines in plasma and urine at high altitude. J Appl Physiol. 1965;20(4):607–10.

    CAS  PubMed  Google Scholar 

  19. Curran AK, Rodman JR, Eastwood PR, Henderson KS, Dempsey JA, Smith CA. Ventilatory responses to specific CNS hypoxia in sleeping dogs. J Appl Physiol. 2000;88:1840–52.

    CAS  PubMed  Google Scholar 

  20. Davy KP, Jones PP, Seals DR. Influence of age on the sympathetic neural adjustments to alterations in systemic oxygen levels in humans. Am J Physiol. 1997;273(2 Pt 2):R690–5.

    CAS  PubMed  Google Scholar 

  21. Donnelly DF, Jiang C, Haddad GG. Comparative responses of brain stem and hippocampal neurons to O2 deprivation: in vitro intracellular studies. Am J Physiol. 1992;262(5 Pt 1):L549–54.

    CAS  PubMed  Google Scholar 

  22. Dripps RD, Comroe Jr JH. The effect of the inhalation of high and low oxygen concentrations on respiration, pulse rate, ballistocardiogram and arterial oxygen saturation (oximeter) of normal individuals. Am J Physiol. 1947;149(2):277–91.

    CAS  PubMed  Google Scholar 

  23. Duplain H, Vollenweider L, Delabays A, Nicod P, Bärtsch P, Scherrer U. Augmented sympathetic activation during short-term hypoxia and high-altitude exposure in subjects susceptible to high-altitude pulmonary edema. Circulation. 1999;99(13):1713–8.

    Article  CAS  PubMed  Google Scholar 

  24. Eckberg DL, Bastow 3rd H, Scruby AE. Modulation of human sinus node function by systemic hypoxia. J Appl Physiol. 1982;52(3):570–7.

    CAS  PubMed  Google Scholar 

  25. Escourrou P, Johnson DG, Rowell LB. Hypoxemia increases plasma catecholamine concentrations in exercising humans. J Appl Physiol. 1984;57(5):1507–11.

    CAS  PubMed  Google Scholar 

  26. Fukuda Y, Honda Y. Modification by chemical stimuli of temporal difference in the onset of inspiratory activity between vagal (superior laryngeal) or hypoglossal and phrenic nerves of the rat. Jpn J Physiol. 1988;38(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  27. Fukuda Y, Sato A, Suzuki A, Trzebski A. Autonomic nerve and cardiovascular responses to changing blood oxygen and carbon dioxide levels in the rat. J Auton Nerv Syst. 1989;28(1):61–74.

    Article  CAS  PubMed  Google Scholar 

  28. Gourine AV, Llaudet E, Dale N, Spyer KM. ATP is a mediator of chemosensory transduction in the central nervous system. Nature. 2005;436:108–11.

    Article  CAS  PubMed  Google Scholar 

  29. Gourine AV. On the peripheral and central chemoreception and control of breathing: an emerging role of ATP. J Physiol. 2005;568(3):715–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gregor M, Jänig W. Effects of systemic hypoxia and hypercapnia on cutaneous and muscle vasoconstrictor neurones to the cat’s hindlimb. Pflugers Arch. 1977;368(1-2):71–81.

    Article  CAS  PubMed  Google Scholar 

  31. Gujic M, Dreyfuss C, Argacha JF, Beloka S, Adamopoulos D, Xhaët O, Pathak A, van de Borne P. Effects of enoximone on peripheral and central chemoreflex responses in humans. Am J Physiol Heart Circ Physiol. 2008;294(1):H322–9.

    Article  CAS  PubMed  Google Scholar 

  32. Gupta PD, Singh M. Carotid chemoreceptors and vagi in hypoxic and cyanide-induced tachycardia in the dog. Am J Physiol. 1981;240(6):H874–80.

    CAS  PubMed  Google Scholar 

  33. Guz A, Noble MI, Widdicombe JG, Trenchard D, Mushin WW. Peripheral chemoreceptor block in man. Respir Physiol. 1966;1:38–40.

    Article  CAS  PubMed  Google Scholar 

  34. Guz A, Noble MI, Widdicombe JG, Trenchard D, Mushin WW, Makey AR. The role of vagal and glossopharyngeal afferent nerves in respiratory sensation, control of breathing and arterial pressure regulation in conscious man. Clin Sci. 1966;30:161–70.

    CAS  PubMed  Google Scholar 

  35. Hansen J, Sander M, Hald CF, Victor RG, Thomas G. Metabolic modulation of sympathetic vasoconstriction in human skeletal muscle: role of tissue hypoxia. J Physiol. 2000;527(2):387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hansen J, Sander M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol. 2003;546(3):921–9.

    Article  CAS  PubMed  Google Scholar 

  37. Hardy JC, Gray K, Whisler S, Leuenberger U. Sympathetic and blood pressure responses to voluntary apnea are augmented by hypoxemia. J Appl Physiol. 1994;77(5):2360–5.

    CAS  PubMed  Google Scholar 

  38. Heistad DD, Abboud FM, Mark AL, Schmid PG. Impaired reflex vasoconstriction in chronically hypoxemic patients. J Clin Invest. 1972;51:331–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hjemdahl P, Fagius J, Freyschuss U, Wallin BG, Daleskog M, Bohlin G, Perski A. Muscle sympathetic activity and norepinephrine release during mental challenge in humans. Am J Physiol. 1989;257(5 Pt 1):E654–64.

    CAS  PubMed  Google Scholar 

  40. Hirakawa H, Nakamura T, Hayashida Y. Effect of carbon dioxide on autonomic cardiovascular responses to systemic hypoxia in conscious rats. Am J Physiol. 1997;273(2 Pt 2):R747–54.

    CAS  PubMed  Google Scholar 

  41. Horvath SM, Dill DB, Corwin W. Effects on man of severe oxygen lack. Am J Physiol. 1943;138:949–59.

    Google Scholar 

  42. Iriki M, Dorward P, Korner PI. Baroreflex “resetting” by arterial hypoxia in the renal and cardiac sympathetic nerves of the rabbit. Pflugers Arch. 1977;370(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  43. Jones PP, Davy KP, Seals DR. Influence of gender on the sympathetic neural adjustments to alterations in systemic oxygen levels in humans. Clin Physiol. 1999;19(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  44. Julia-Serda G, Molfino NA, Furlott HG, McClean PA, Rebuck AS, Hoffstein V, Slutsky AS, Zamel N, Chapman KR. Tracheobronchial dilation during isocapnic hypoxia in conscious humans. J Appl Physiol. 1993;75(4):1728–33.

    CAS  PubMed  Google Scholar 

  45. Kanstrup IL, Poulsen TD, Hansen JM, Andersen LJ, Bestle MH, Christensen NJ, Olsen NV. Blood pressure and plasma catecholamines in acute and prolonged hypoxia: effects of local hypothermia. J Appl Physiol. 1999;87:2053–8.

    CAS  PubMed  Google Scholar 

  46. King CE, Cain SM, Chapler CK. Peripheral vascular responses to hypoxic hypoxia after aortic denervation. Can J Physiol Pharmacol. 1985;63(9):1197–201.

    Article  CAS  PubMed  Google Scholar 

  47. Kiwull-Schone H, Kiwull P. The role of the vagus nerves in the ventilatory response to lowered PaO2 with intact and eliminated carotid chemoreflexes. Pflugers Arch. 1979;381(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kline DD, King TL, Austgen JR, Heesch CM, Hasser EM. Sensory afferent and hypoxia-mediated activation of nucleus tractus solitarius neurons that project to the rostral ventrolateral medulla. Neuroscience. 2010;167(2):510–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koehler RC, McDonald BW, Krasney JA. Influence of CO2 on cardiovascular response to hypoxia in conscious dogs. Am J Physiol. 1980;239(4):H545–58.

    CAS  PubMed  Google Scholar 

  50. Koizumi K, Terui N, Kollai M, Brooks CM. Functional significance of coactivation of vagal and sympathetic cardiac nerves. Proc Natl Acad Sci U S A. 1982;79(6):2116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koller EA, Drechsel S, Hess T, Macherel P, Boutellier U. Effects of atropine and propranolol on the respiratory, circulatory, and ECG responses to high altitude in man. Eur J Appl Physiol. 1988;57(2):163–72.

    Article  CAS  Google Scholar 

  52. Lack EE. Hyperplasia of vagal and carotid body paraganglia in patients with chronic hypoxemia. Am J Pathol. 1978;91(3):497–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lahiri S, Roya A, Babya SM, Hoshia T, Semenza GI, Prabhakar NR. Oxygen sensing in the body. Prog Biophys Mol Biol. 2006;91:249–86.

    Article  CAS  PubMed  Google Scholar 

  54. Leon-Velarde F, Richalet JP, Chavez JC, Kacimi R, Rivera-Chira M, Palacios JA, Clark D. Hypoxia- and normoxia-induced reversibility of autonomic control in Andean guinea pig heart. J Appl Physiol. 1996;81(5):2229–34.

    CAS  PubMed  Google Scholar 

  55. Leuenberger U, Gleeson K, Wroblewski K, Prophet S, Zelis R, Zwillich C, Sinoway L. Norepinephrine clearance is increased during acute hypoxemia in humans. Am J Physiol. 1991;261:H1659–64.

    CAS  PubMed  Google Scholar 

  56. Li KY, Ponte J, Sadler CL. Carotid body chemoreceptor response to prolonged hypoxia in the rabbit: effects of domperidone and propranolol. J Physiol. 1990;430:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lugliani R, Whipp BJ, Seard C, Wasserman K. Effect of bilateral carotid-body resection on ventilatory control at rest and during exercise in man. N Engl J Med. 1971;285:1105–11.

    Article  CAS  PubMed  Google Scholar 

  58. Mancia G. Influence of carotid baroreceptors on vascular responses to carotid chemoreceptor stimulation in the dog. Circ Res. 1975;36(2):270–6.

    Article  CAS  PubMed  Google Scholar 

  59. Mardon K, Merlet P, Syrota A, Mazière B. Effects of 5-day hypoxia on cardiac adrenergic neurotransmission in rats. J Appl Physiol. 1998;85(3):890–7.

    CAS  PubMed  Google Scholar 

  60. Marshall JM. The integrated response to hypoxia: from circulation to cells. Exp Physiol. 1999;84:449–70.

    Article  CAS  PubMed  Google Scholar 

  61. Martin-Body RL, Robson GJ, Sinclair JD. Restoration of hypoxic respiratory responses in the awake rat after carotid body denervation by sinus nerve section. J Physiol. 1986;380:61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mazzeo RS, Bender PR, Brooks GA, Butterfield GE, Groves BM, Sutton JR, Wolfel EE, Reeves JT. Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure. Am J Physiol. 1991;261:E419–24.

    CAS  PubMed  Google Scholar 

  63. Mazzeo RS, Wolfel EE, Butterfield GE, Reeves JT. Sympathetic response during 21 days at high altitude (4,300 m) as determined by urinary and arterial catecholamines. Metabolism. 1994;43(10):1226–32.

    Article  CAS  PubMed  Google Scholar 

  64. Mazzeo RS, Brooks GA, Butterfield GE, Podolin DA, Wolfel EE, Reeves JT. Acclimatization to high altitude increases muscle sympathetic activity both at rest and during exercise. Am J Physiol. 1995;269:R201–7.

    CAS  PubMed  Google Scholar 

  65. Mazzeo RS, Child A, Butterfield GE, Mawson JT, Zamudio S, Moore LG. Catecholamine response during 12 days of high-altitude exposure (4, 300 m) in women. J Appl Physiol. 1998;84(4):1151–7.

    CAS  PubMed  Google Scholar 

  66. Minson JB, Llewellyn-Smith IJ, Arnolda LF, Pilowsky PM, Oliver JR, Chalmers JP. Disinhibition of the rostral ventral medulla increases blood pressure and Fos expression in bulbospinal neurons. Brain Res. 1994;646(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  67. Mizusawa A, Ogawa H, Kikuchi Y, Hida W, Kurosawa O, Okabe S, Takishima T, Shirato K. In vivo release of glutamate in nucleus tractus solitarii of the rat during hypoxia. J Physiol. 1994;478:55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakatsuka H, Nagano O, Foldes FF, Nagashima H, Vizi ES. Effects of adenosine on norepinephrine and acetylcholine release from guinea pig right atrium: role of A1-receptors. Neurochem Int. 1995;27(4-5):345–53.

    Article  CAS  PubMed  Google Scholar 

  69. Narkiewicz K, Pesek CA, van de Borne PJ, Kato M, Somers VK. Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation. 1999;100(3):262–7.

    Article  CAS  PubMed  Google Scholar 

  70. Narkiewicz K, van de Borne PJ, Pesek CA, Dyken ME, Montano N, Somers VK. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation. 1999;99(9):1183–9.

    Article  CAS  PubMed  Google Scholar 

  71. Nielsen AM, Bisgard GE, Mitchell GS. Phrenic nerve responses to hypoxia and CO2 in decerebrate dogs. Respir Physiol. 1986;65(3):267–83.

    Article  CAS  PubMed  Google Scholar 

  72. Nielsen AM, Bisgard GE, Vidruk EH. Carotid chemoreceptor activity during acute and sustained hypoxia in goats. J Appl Physiol. 1988;65(4):1796–802.

    CAS  PubMed  Google Scholar 

  73. Nurse CA. Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol. 2010;95(6):657–67.

    Article  CAS  PubMed  Google Scholar 

  74. O’Donnell CP, Bower EA. Heart rate changes evoked by hypoxia in the anaesthetized, artificially ventilated cat. Exp Physiol. 1992;77(2):271–83.

    Article  PubMed  Google Scholar 

  75. Pathak A, Velez-Roa S, Xhaët O, Najem B, van de Borne P. Dose-dependent effect of dobutamine on chemoreflex activity in healthy volunteers. Br J Clin Pharmacol. 2006;62(3):272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Prabhakar NR. Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol. 2000;88:2287–95.

    CAS  PubMed  Google Scholar 

  77. Ramirez G, Hammond M, Agosti SJ, Bittle PA, Dietz JR, Colice GL. Effects of hypoxemia at sea level and high altitude on sodium excretion and hormonal levels. Aviat Space Environ Med. 1992;63(10):891–8.

    CAS  PubMed  Google Scholar 

  78. Reis DJ, Golanov EV, Ruggiero DA, Sun MK. Sympatho-excitatory neurons of the rostral ventrolateral medulla are oxygen sensors and essential elements in the tonic and reflex control of the systemic and cerebral circulations. J Hypertens Suppl. 1994;12:S159–80.

    CAS  PubMed  Google Scholar 

  79. Rostrup M. Catecholamines, hypoxia and high altitude. Acta Physiol Scand. 1998;162(3):389–99.

    Article  CAS  PubMed  Google Scholar 

  80. Rowell LB, Blackmon JR. Lack of sympathetic vasoconstriction in hypoxemic humans at rest. Am J Physiol. 1986;251:H562–70.

    CAS  PubMed  Google Scholar 

  81. Rowell LB, Johnson DG, Chase PB, Comess KA, Seals DR. Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. J Appl Physiol. 1989;66:1736–43.

    CAS  PubMed  Google Scholar 

  82. Saito M, Mano T, Iwase S, Koka K, Abe H, Yamazaki Y. Responses in muscle sympathetic activity to acute hypoxia in humans. J Appl Physiol. 1988;65:1548–52.

    CAS  PubMed  Google Scholar 

  83. Saito M, Abe H, Iwase S, Koga K, Mano T. Muscle sympathetic nerve responsiveness to static contraction is not altered under hypoxia. Jpn J Physiol. 1991;41(5):775–83.

    Article  CAS  PubMed  Google Scholar 

  84. Schobel HP, Ferguson DW, Clary MP, Somers VK. Differential effects of digitalis on chemoreflex responses in humans. Hypertension. 1994;23:302–7.

    Article  CAS  PubMed  Google Scholar 

  85. Schwarzacher SW, Wilhelm Z, Anders K, Richter DW. The medullary respiratory network in the rat. J Physiol. 1991;435:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schwarzacher SW, Rüb U, Deller T. Neuroanatomical characteristics of the human pre-Bötzinger complex and its involvement in neurodegenerative brainstem diseases. Brain. 2011;134:24–35.

    Article  PubMed  Google Scholar 

  87. Seals DR, Johnson DG, Fregosi RF. Hypoxia potentiates exercise-induced neural activation in humans. J Appl Physiol. 1991;71(3):1032–40.

    CAS  PubMed  Google Scholar 

  88. Solomon IC, Edelman NH, Neubauer JA. Pre-Bötzinger complex functions as a central hypoxia chemosensor for respiration in vivo. J Neurophysiol. 2000;83:2854–68.

    CAS  PubMed  Google Scholar 

  89. Solomon IC. Excitation of phrenic and sympathetic output during acute hypoxia: contribution of medullary oxygen detectors. Respir Physiol. 2000;121:101–17.

    Article  CAS  PubMed  Google Scholar 

  90. Somers VK, Mark AL, Zavala DC, Abboud FM. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. J Appl Physiol. 1989;67:2095–100.

    CAS  PubMed  Google Scholar 

  91. Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87:1953–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun M-K, Reis DJ. Hypoxia-activated Ca2+ currents in pacemaker neurones of rat rostral ventrolateral medulla in vitro. J Physiol. 1994;476:101–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun M-K, Reis DJ. Hypoxia selectively excites vasomotor neurons of the rostral ventrolateral medulla in rats. Am J Physiol. 1994;266:R245–56.

    CAS  PubMed  Google Scholar 

  94. Timmers HJLM, Karemaker JM, Wieling W, Marres HA, Folgering HTM, Lenders JW. Baroreflex and chemoreflex function after bilateral carotid body tumor resection. J Hypertens. 2003;21:591–9.

    Article  CAS  PubMed  Google Scholar 

  95. Timmers HJLM, Wieling W, Karemaker JM, Lenders JWM. Denervation of carotid baro- and chemoreceptors in humans. J Physiol. 2003;553:3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Velez-Roa S, Kojonazarov B, Ciarka A, Godart P, Naeije R, Somers VK, van de Borne P. Dobutamine potentiates arterial chemoreflex sensitivity in healthy normal humans. Am J Physiol Heart Circ Physiol. 2003;285(3):H1356–61.

    Article  CAS  PubMed  Google Scholar 

  97. Verlato G, Borgdorff P. Endogenous adenosine enhances vagal negative chronotropic effect during hypoxia in the anaesthetised rabbit. Cardiovasc Res. 1990;24(7):532–9.

    Article  CAS  PubMed  Google Scholar 

  98. Vizek M, Pickett CK, Weil JV. Increased carotid body hypoxic sensitivity during acclimatization to hypobaric hypoxia. J Appl Physiol. 1987;63:2403–10.

    CAS  PubMed  Google Scholar 

  99. Wallin BG, Sundlöf G, Delius W. The effect of carotid sinus nerve stimulation on muscle and skin nerve sympathetic activity in man. Pflugers Arch. 1975;358(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  100. Whipp BJ, Ward SA. Physiologic changes following bilateral carotid-body resection in patients with chronic obstructive pulmonary disease. Chest. 1992;101:656–61.

    Article  CAS  PubMed  Google Scholar 

  101. Wolfel EE, Selland MA, Mazzeo RS, Reeves JT. Systemic hypertension at 4,300 m is related to sympathoadrenal activity. J Appl Physiol. 1994;76(4):1643–50.

    CAS  PubMed  Google Scholar 

  102. Zanzinger J, Czachurski J, Seller H. Nitric oxide in the ventrolateral medulla regulates sympathetic responses to systemic hypoxia in pigs. Am J Physiol. 1998;275(1 Pt 2):R33–9.

    CAS  PubMed  Google Scholar 

  103. Zhang W, Mifflin SW. Excitatory amino acid receptors within NTS mediate arterial chemoreceptor reflexes in rats. Am J Physiol. 1993;265:H770–3.

    CAS  PubMed  Google Scholar 

  104. Zhong S, Zhou SY, Gebber GL, Barman SM. Coupled oscillators account for the slow rhythms in sympathetic discharge and phrenic activity. Am J Physiol. 1997;272:R1314–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Sander M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sander, M. (2016). Does the Sympathetic Nervous System Adapt to Chronic Altitude Exposure?. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_25

Download citation

Publish with us

Policies and ethics