Skip to main content
Book cover

Hypoxia pp 209–219Cite as

Bidirectional Control of Blood Flow by Astrocytes: A Role for Tissue Oxygen and Other Metabolic Factors

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 903))

Abstract

Altering cerebral blood flow through the control of cerebral vessel diameter is critical so that the delivery of molecules important for proper brain functioning is matched to the activity level of neurons. Although the close relationship of brain glia known as astrocytes with cerebral blood vessels has long been recognized, it is only recently that these cells have been demonstrated to translate information on the activity level and energy demands of neurons to the vasculature. In particular, astrocytes respond to elevations in extracellular glutamate as a consequence of synaptic transmission through the activation of group 1 metabotropic glutamate receptors. These Gq-protein coupled receptors elevate intracellular calcium via IP3 signaling. A close examination of astrocyte endfeet calcium signals has been shown to cause either vasoconstriction or vasodilation. Common to both vasomotor responses is the generation of arachidonic acid in astrocytes by calcium sensitive phospholipase A2. Vasoconstriction ensues from the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid, while vasodilation ensues from the production of epoxyeicosatrienoic acids or prostaglandins. Factors that determine whether constrictor or dilatory pathways predominate include brain oxygen, lactate, adenosine as well as nitric oxide. Changing the oxygen level itself leads to many downstream changes that facilitate the switch from vasoconstriction at high oxygen to vasodilation at low oxygen. These findings highlight the importance of astrocytes as sensors of neural activity and metabolism to coordinate the delivery of essential nutrients via the blood to the working cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alkayed NJ, Birks EK, et al. Role of P-450 arachidonic acid epoxygenase in the response of cerebral blood flow to glutamate in rats. Stroke. 1997;28(5):1066–72.

    Article  CAS  PubMed  Google Scholar 

  2. Ances BM, Buerk DG, et al. Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neurosci Lett. 2001;306(1–2):106–10.

    Article  CAS  PubMed  Google Scholar 

  3. Benyo Z, Gorlach C, et al. Involvement of thromboxane A2 in the mediation of the contractile effect induced by inhibition of nitric oxide synthesis in isolated rat middle cerebral arteries. J Cereb Blood Flow Metab. 1998;18(6):616–8.

    Article  CAS  PubMed  Google Scholar 

  4. Benyo Z, Gorlach C, et al. Role of nitric oxide and thromboxane in the maintenance of cerebrovascular tone. Kidney Int Suppl. 1998;67:S218–20.

    Article  CAS  PubMed  Google Scholar 

  5. Brennan AM, Connor JA, et al. NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function. J Cereb Blood Flow Metab. 2006;26(11):1389–406.

    Article  CAS  PubMed  Google Scholar 

  6. Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia. 2007;55(12):1263–71.

    Article  PubMed  Google Scholar 

  7. Cahoy JD, Emery B, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28(1):264–78.

    Article  CAS  PubMed  Google Scholar 

  8. Chan BS, Endo S, et al. Identification of lactate as a driving force for prostanoid transport by prostaglandin transporter PGT. Am J Physiol Renal Physiol. 2002;282(6):F1097–102.

    Article  CAS  PubMed  Google Scholar 

  9. Cornell-Bell AH, Finkbeiner SM, et al. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990;247(4941):470–3.

    Article  CAS  PubMed  Google Scholar 

  10. Dani JW, Chernjavsky A, et al. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron. 1992;8(3):429–40.

    Article  CAS  PubMed  Google Scholar 

  11. Devor A, Hillman EM, et al. Stimulus-induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral somatosensory cortex. J Neurosci. 2008;28(53):14347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Devor A, Ulbert I, et al. Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc Natl Acad Sci U S A. 2005;102(10):3822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ellis EF, Police RJ, et al. Dilation of cerebral arterioles by cytochrome P-450 metabolites of arachidonic acid. Am J Physiol. 1990;259(4 Pt 2):H1171–7.

    CAS  PubMed  Google Scholar 

  14. Ellis EF, Wei EP, et al. The effect of PGF2 alpha on in vivo cerebral arteriolar diameter in cats and rats. Prostaglandins. 1983;26(6):917–23.

    Article  CAS  PubMed  Google Scholar 

  15. Faraci FM. Effects of endothelin and vasopressin on cerebral blood vessels. Am J Physiol. 1989;257(3 Pt 2):H799–803.

    CAS  PubMed  Google Scholar 

  16. Farooqui AA, Yang HC, et al. Phospholipase A2 and its role in brain tissue. J Neurochem. 1997;69(3):889–901.

    Article  CAS  PubMed  Google Scholar 

  17. Fellows LK, Boutelle MG, et al. Physiological stimulation increases nonoxidative glucose metabolism in the brain of the freely moving rat. J Neurochem. 1993;60(4):1258–63.

    Article  CAS  PubMed  Google Scholar 

  18. Filosa JA, Bonev AD, et al. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res. 2004;95(10):e73–81.

    Article  CAS  PubMed  Google Scholar 

  19. Fleming I. Cytochrome p450 and vascular homeostasis. Circ Res. 2001;89(9):753–62.

    Article  CAS  PubMed  Google Scholar 

  20. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83(4):1140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fox PT, Raichle ME, et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462–4.

    Article  CAS  PubMed  Google Scholar 

  22. Gebremedhin D, Ma YH, et al. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol. 1992;263(2 Pt 2):H519–25.

    CAS  PubMed  Google Scholar 

  23. Gordon GR, Choi HB, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature. 2008;456(7223):745–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gordon GR, Howarth C, MacVicar BA. Bidirectional control of arteriole diameter by astrocytes. Exp Physiol. 2011;96(4):393–9.

    Article  CAS  PubMed  Google Scholar 

  25. Gurden H, Uchida N, et al. Sensory-evoked intrinsic optical signals in the olfactory bulb are coupled to glutamate release and uptake. Neuron. 2006;52(2):335–45.

    Article  CAS  PubMed  Google Scholar 

  26. Hein TW, Xu W, et al. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels. Invest Ophthalmol Vis Sci. 2006;47(2):693–9.

    Article  PubMed  Google Scholar 

  27. Hu Y, Wilson GS. Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J Neurochem. 1997;68(4):1745–52.

    Article  CAS  PubMed  Google Scholar 

  28. Hu Y, Wilson GS. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem. 1997;69(4):1484–90.

    Article  CAS  PubMed  Google Scholar 

  29. Iadecola C, Li J, et al. Neural mechanisms of blood flow regulation during synaptic activity in cerebellar cortex. J Neurophysiol. 1996;75(2):940–50.

    CAS  PubMed  Google Scholar 

  30. Ido Y, Chang K, et al. NADH augments blood flow in physiologically activated retina and visual cortex. Proc Natl Acad Sci U S A. 2004;101(2):653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ignacio PC, Baldwin BA, et al. Brain isozyme of glycogen phosphorylase: immunohistological localization within the central nervous system. Brain Res. 1990;529(1–2):42–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ishimoto H, Matsuoka I, et al. A comparative study of arachidonic acid metabolism in rabbit cultured astrocytes and human astrocytoma cells (1321N1). Gen Pharmacol. 1996;27(2):313–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kasischke KA, Vishwasrao HD, et al. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science. 2004;305(5680):99–103.

    Article  CAS  PubMed  Google Scholar 

  34. Lange A, Gebremedhin D, et al. 20-Hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C. J Biol Chem. 1997;272(43):27345–52.

    Article  CAS  PubMed  Google Scholar 

  35. Lin AL, Fox PT, et al. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl Acad Sci U S A. 2010;107(18):8446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindauer U, Leithner C, et al. Neurovascular coupling in rat brain operates independent of hemoglobin deoxygenation. J Cereb Blood Flow Metab. 2010;30(4):757–68.

    Article  PubMed  Google Scholar 

  37. Lu J, Dai G, et al. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat. Neuroimage. 2009;45(4):1126–34.

    Article  PubMed  Google Scholar 

  38. MacCumber MW, Ross CA, et al. Endothelin in brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc Natl Acad Sci U S A. 1990;87(6):2359–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCalden TA, Nath RG, et al. The role of prostacyclin in the hypercapnic and hypoxic cerebrovascular dilations. Life Sci. 1984;34(19):1801–7.

    Article  CAS  PubMed  Google Scholar 

  40. Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006;26(11):2862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mintun MA, Vlassenko AG, et al. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci U S A. 2004;101(2):659–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mukamel R, Gelbard H, et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science. 2005;309(5736):951–4.

    Article  CAS  PubMed  Google Scholar 

  43. Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature. 2004;431(7005):195–9.

    Article  CAS  PubMed  Google Scholar 

  44. Murphy K, Gerzanich V, et al. Adenosine-A2a receptor down-regulates cerebral smooth muscle L-type Ca2+ channel activity via protein tyrosine phosphatase, not cAMP-dependent protein kinase. Mol Pharmacol. 2003;64(3):640–9.

    Article  CAS  PubMed  Google Scholar 

  45. Niwa K, Araki E, et al. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J Neurosci. 2000;20(2):763–70.

    CAS  PubMed  Google Scholar 

  46. Niwa K, Haensel C, et al. Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res. 2001;88(6):600–8.

    Article  CAS  PubMed  Google Scholar 

  47. Offenhauser N, Thomsen K, et al. Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J Physiol. 2005;565(Pt 1):279–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ogawa S, Lee TM, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pasti L, Volterra A, et al. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci. 1997;17(20):7817–30.

    CAS  PubMed  Google Scholar 

  50. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 1994;91(22):10625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pellerin L, Pellegri G, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci. 1998;20(4–5):291–9.

    Article  CAS  PubMed  Google Scholar 

  52. Petzold GC, Albeanu DF, et al. Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron. 2008;58(6):897–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Porter JT, McCarthy KD. GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia. 1995;13(2):101–12.

    Article  CAS  PubMed  Google Scholar 

  54. Porter JT, McCarthy KD. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci. 1996;16(16):5073–81.

    CAS  PubMed  Google Scholar 

  55. Poulin MJ, Robbins PA. Indexes of flow and cross-sectional area of the middle cerebral artery using Doppler ultrasound during hypoxia and hypercapnia in humans. Stroke. 1996;27(12):2244–50.

    Article  CAS  PubMed  Google Scholar 

  56. Roman RJ. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev. 2002;82(1):131–85.

    Article  CAS  PubMed  Google Scholar 

  57. Roy CS, Sherrington CS. On the regulation of the blood-supply of the brain. J Physiol. 1890;11(1–2):85–108. 158-7-158-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Simard M, Arcuino G, et al. Signaling at the gliovascular interface. J Neurosci. 2003;23(27):9254–62.

    CAS  PubMed  Google Scholar 

  59. Stella N, Estelles A, et al. Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes. J Neurosci. 1997;17(9):2939–46.

    CAS  PubMed  Google Scholar 

  60. Takano T, Tian GF, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006;9(2):260–7.

    Article  CAS  PubMed  Google Scholar 

  61. Turner DA, Foster KA, et al. Differences in O2 availability resolve the apparent discrepancies in metabolic intrinsic optical signals in vivo and in vitro. Trends Neurosci. 2007;30(8):390–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vlassenko AG, Rundle MM, et al. Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. Proc Natl Acad Sci U S A. 2006;103(6):1964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vogel J, Kuschinsky W. Decreased heterogeneity of capillary plasma flow in the rat whisker-barrel cortex during functional hyperemia. J Cereb Blood Flow Metab. 1996;16(6):1300–6.

    Article  CAS  PubMed  Google Scholar 

  64. Zonta M, Angulo MC, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  65. Zonta M, Sebelin A, et al. Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol. 2003;553(Pt 2):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was funded by Canadian Institutes for HealthResearch (CIHR) and the Fondation Leducq. GRJG is a CIHR Bisby Postdoctoral Fellow, CH was a Sir Henry Wellcome Post Doctoral Fellow and BAM is a Canada Research Chair in Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant R. J. Gordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gordon, G.R.J., Howarth, C., MacVicar, B.A. (2016). Bidirectional Control of Blood Flow by Astrocytes: A Role for Tissue Oxygen and Other Metabolic Factors. In: Roach, R., Hackett, P., Wagner, P. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 903. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7678-9_15

Download citation

Publish with us

Policies and ethics