Skip to main content

Wearable Dialysis Devices

  • Chapter
  • First Online:
Core Concepts in Dialysis and Continuous Therapies

Abstract

Although peritoneal dialysis is a form of portable and wearable dialysis, it requires patients to use fresh dialysate and either perform a number of manual daytime exchanges or use a cycler machine. As such the search has been to develop internal implantable, or external wearable or portable, devices that do not rely on a supply of fresh dialysate, so allowing patients to perform the activities of daily living without restriction, and similarly to be able to drink and eat freely without restriction.

Although the concept of wearable and portable dialysis devices dates back to the pioneering days of the start of dialysis as a long-term treatment for patients with advanced chronic kidney disease, it is only recently with developments in nanotechnology-manufacturing processes, coupled with microcircuit designs and the resurgent interest in sorbent technology that has allowed animal trials and now the first human trials of these devices to take place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lande AJ, Roberts M, Pecker EA (1977) In search of a 24 hours per day artificial kidney. J Dialysis. 1:805–23.

    Article  CAS  Google Scholar 

  2. Jacobsen SC, Stephen RL, Bulloch EC, Luntz RD, Kolf WJ (1975) A wearable artificial kidney: functional description of hardware and clinical results. Proc Clin Dial Transplant Forum. 5:65–71.

    CAS  PubMed  Google Scholar 

  3. Stephens RL, Jacobsen SC, Atkin-Thor E, Kolf WJ (1976) A portable wearable artificial kidney (WAK): initial evaluation. Proc Euro Dial Transplant Assoc. 12:511–18.

    CAS  Google Scholar 

  4. Kolff WJ, Jacobsen S, Stephen RL, Rose D (1976) Towards a wearable artificial kidney. Kidney Int. 7(suppl):S300–4.

    Google Scholar 

  5. Stephen RL, Kablitz C, Jacobsen S, Kolff WJ (1978) Combined technological clinical approach to wearable dialysis. Kidney Int suppl. 8:S125–32.

    PubMed  Google Scholar 

  6. Blumenkrantz MJ, Gordon A, Roberts M, Lewin AJ, Pecker EA, Moran JK, Coburn JW, Maxwell MH (1979) Applications of the Redy sorbent system to hemodialysis and peritoneal dialysis. Artif Organs. 3(3):230–6.

    Article  CAS  PubMed  Google Scholar 

  7. Shaldon S, Beau MC, Deschodt G, Lysaght MJ, Ramperez P, Mion C (1980) Continuous ambulatory hemofiltration. Trans Am Soc Artif Intern Organs. 26:210–23.

    CAS  PubMed  Google Scholar 

  8. Murisasco A, Baz M, Boobes Y, Bertocchio P, el Mehdi M, Durand C, Reynier JP, Ragon A (1986) A continuous hemofiltration system, using sorbents for hemofiltrate regeneration. Clin Nephrol. 26(Suppl. 1):S53–7.

    PubMed  Google Scholar 

  9. Murisasco A, Reynier JP, Ragon A, Boobes Y, Baz M, Durand C, Bertocchio P, Agenet C, el Mehdi M (1986) Continuous arterio-venous hemofiltration in a wearable device to treat end-stage renal disease. Trans Am Soc Artif Intern Organs. 32:567–71.

    Article  CAS  Google Scholar 

  10. Takahashi S (2012) Future home hemodialysis—advantages of the NxStage system one. Contrib Nephrol. 177:117–26.

    Article  PubMed  Google Scholar 

  11. Ronco C, Fecondini L (2007) The Vicenza wearable artificial kidney for peritoneal dialysis (ViWAK PD). Blood Purif. 25:383–8.

    Article  PubMed  Google Scholar 

  12. Roberts M, Ash SR, Lee DB (1999) Innovative peritoneal dialysis: flow-thru and dialysate regeneration. ASAIO J. 45(5):372–8.

    Article  CAS  PubMed  Google Scholar 

  13. Lee DBN, Roberts M (2008) A peritoneal based automated wearable artificial kidney. Clin Exper Nephrol. 12:171–80.

    Article  CAS  Google Scholar 

  14. Maroni BJ, Steinman TI, Mitch WE (1985) A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 27:58–65.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts M, Lee DBN (2006) Wearable artificial kidneys. A peritoneal dialysis approach. Dial Transplant. 36:780–2.

    Article  Google Scholar 

  16. Wester M, Simonis F, Gerritsen KG, Boer WH, Wodzig WK, Kooman JP, Joles JA (2013) A regenerable potassium and phosphate sorbent system to enhance dialysis efficacy and device portability: an in vitro study. Nephrol Dial Transplant. 28(9):2364–71.

    Article  CAS  PubMed  Google Scholar 

  17. Gura V, Davenport A, Beizai M, Ezon C, Ronco C (2009) Beta 2-microglobulin and phosphate clearances using a wearable artificial kidney: a pilot study. Am J Kidney Dis. 54:104–11.

    Article  CAS  PubMed  Google Scholar 

  18. Davenport A, Gura V, Ronco C, Beizai M, Ezon C, Rambod E (2007) A wearable hemodialysis device for patients with end-stage renal failure: a pilot study. Lancet. 370:2005–10.

    Article  PubMed  Google Scholar 

  19. Gura V, Macy AS, Beizai M, Ezon C, Golper TA (2009) Technical breakthroughs in the wearable artificial kidney (WAK). Clin J Am Soc Nephrol. 4(9):1441–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ash SR (2008) The Allient dialysis system. Semin Dial. 17:164–6.

    Article  Google Scholar 

  21. Melvin ME, Fissell WH, Roy S, Brown DL (2010) Silicon induces minimal thrombo-inflammatory response during 28-Day intravascular implant testing. ASAIO J. 56:344–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hofmann CL, Fissell WH (2010) Middle-molecule clearance at 20 and 35 ml/kg/h in continuous veno-venous haemodiafiltration. Blood Purif. 29:259–63.

    Article  CAS  PubMed  Google Scholar 

  23. Fissell WH, Dubnisheva A, Eldridge AN, Fleischman AJ, Zydney AL, Roy S (2009) High-performance silicon nanopore hemofiltration membranes. J Memb Sci. 326:58–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holland NB, Qiu Y, Ruegsegger M, Marchant RE (1998) Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature. 392:799–801.

    Article  CAS  PubMed  Google Scholar 

  25. Fissell WH, Kimball J, MacKay SM, Funke A, Humes HD (2001) The role of a bioengineered artificial kidney in renal failure. Annals New York Acad Sci. 944:284–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Davenport MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davenport, A. (2016). Wearable Dialysis Devices. In: Magee, C., Tucker, J., Singh, A. (eds) Core Concepts in Dialysis and Continuous Therapies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7657-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7657-4_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7655-0

  • Online ISBN: 978-1-4899-7657-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics