Skip to main content

Gene Therapy for Inborn Errors of Metabolism: Batten Disease

  • Chapter
  • First Online:
Translational Neuroscience

Abstract

The development of a gene therapy for inborn errors of metabolism is a multifaceted challenge that rides on organizational, financial, and scientific issues. Using our experience with developing a gene therapy strategy for Batten disease [late infantile neuronal ceroid lipofuscinosis (LINCL), CLN2 disease], these factors are described in the context of the: (1) development of a therapeutic concept for a target disease; (2) pathway to proof of concept via preclinical studies; (3) translation to clinical development; (4) funding and the associated restrictions; (5) assembly of the clinical team; (6) regulatory and compliance requirements; and (7) the iterative process of using lessons learned to inform the next generation therapy. Our experience with each of these factors is demonstrated from our development and clinical translation for two generations of drug product applied to this fatal childhood disorder. Outlined are the descriptions of the hurdles encountered and our solutions, which should be informative for those who seek to develop a gene therapy for a rare disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lossinsky AS, Shivers RR. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review. Histol Histopathol. 2004;19:535–64.

    CAS  PubMed  Google Scholar 

  2. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2:3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Williams RE, Gottlob I, Lake BD, Goebel HH, Winchester BG, Wheeler RB. CLN2 classic late infantile NCL. In: Goebel HH, editor. The neuronal ceroid lipofuscinoses (Batten disease). Amsterdam: IOS Press; 1999. p. 37–53.

    Google Scholar 

  4. Sleat DE, Donnelly RJ, Lackland H, Liu CG, Sohar I, Pullarkat RK, Lobel P. Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science. 1997;277:1802–5.

    Article  CAS  PubMed  Google Scholar 

  5. Sleat DE, Gin RM, Sohar I, Wisniewski K, Sklower-Brooks S, Pullarkat RK, Palmer DN, Lerner TJ, Boustany RM, Uldall P, Siakotos AN, Donnelly RJ, Lobel P. Mutational analysis of the defective protease in classic late-infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. Am J Hum Genet. 1999;64:1511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mole SE, Williams RE, Goebel H-H, editors. The neuronal ceroid lipofuscinoses (Batten disease). Oxford: Oxford University Press; 2011.

    Google Scholar 

  7. Birch DG. Retinal degeneration in retinitis pigmentosa and neuronal ceroid lipofuscinosis: an overview. Mol Genet Metab. 1999;66:356–66.

    Article  CAS  PubMed  Google Scholar 

  8. Haltia M, Goebel HH. The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim Biophys Acta. 1832;2013:1795–800.

    Google Scholar 

  9. Schulz A, Kohlschutter A, Mink J, Simonati A, Williams R. NCL diseases—clinical perspectives. Biochim Biophys Acta. 1832;2013:1801–6.

    Google Scholar 

  10. Kohan R, Cismondi IA, Oller-Ramirez AM, Guelbert N, Anzolini TV, Alonso G, Mole SE, de Kremer DR, de Halac NI. Therapeutic approaches to the challenge of neuronal ceroid lipofuscinoses. Curr Pharm Biotechnol. 2011;12:867–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sondhi D, Rosenberg JR, Van de Graaf B, Kaminsky SM, Crystal RG. Advances in the treatment of neuronal ceroid lipofuscinosis. Expert Opin Orphan Drugs. 2013;1:951–75.

    Article  CAS  Google Scholar 

  12. Neufeld EF, Fratantoni JC. Inborn errors of mucopolysaccharide metabolism. Science. 1970;169:141–6.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–58.

    Article  CAS  PubMed  Google Scholar 

  14. Sondhi D, Hackett NR, Apblett RL, Kaminsky SM, Pergolizzi RG, Crystal RG. Feasibility of gene therapy for late neuronal ceroid lipofuscinosis. Arch Neurol. 2001;58:1793–8.

    Article  CAS  PubMed  Google Scholar 

  15. Berns KI, Giraud C. Biology of adeno-associated virus. Curr Top Microbiol Immunol. 1996;218:1–23.

    CAS  PubMed  Google Scholar 

  16. Carter B. Adeno-associated virus and adeno-associated virus vectors for gene delivery. In: Templeton NS, Lasic DD, editors. Gene therapy. New York, NY: Marcel-Dekker; 2000. p. 41–59.

    Google Scholar 

  17. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ. Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res. 1996;713:99–107.

    Article  CAS  PubMed  Google Scholar 

  18. Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW, Munro PM, Fauser S, Reichel MB, Kinnon C, Hunt DM, Bhattacharya SS, Thrasher AJ. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet. 2000;25:306–10.

    Article  CAS  PubMed  Google Scholar 

  19. During MJ, Samulski RJ, Elsworth JD, Kaplitt MG, Leone P, Xiao X, Li J, Freese A, Taylor JR, Roth RH, Sladek Jr JR, O’Malley KL, Redmond Jr DE. In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector. Gene Ther. 1998;5:820–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O’Malley KL, During MJ. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet. 1994;8:148–54.

    Article  CAS  PubMed  Google Scholar 

  21. Mandel RJ, Rendahl KG, Spratt SK, Snyder RO, Cohen LK, Leff SE. Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson’s disease. J Neurosci. 1998;18:4271–84.

    CAS  PubMed  Google Scholar 

  22. Lo WD, Qu G, Sferra TJ, Clark R, Chen R, Johnson PR. Adeno-associated virus-mediated gene transfer to the brain: duration and modulation of expression. Hum Gene Ther. 1999;10:201–13.

    Article  CAS  PubMed  Google Scholar 

  23. Bennett J, Maguire AM, Cideciyan AV, Schnell M, Glover E, Anand V, Aleman TS, Chirmule N, Gupta AR, Huang Y, Gao GP, Nyberg WC, Tazelaar J, Hughes J, Wilson JM, Jacobson SG. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci U S A. 1999;96:9920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lau D, McGee LH, Zhou S, Rendahl KG, Manning WC, Escobedo JA, Flannery JG. Retinal degeneration is slowed in transgenic rats by AAV-mediated delivery of FGF-2. Invest Ophthalmol Vis Sci. 2000;41:3622–33.

    CAS  PubMed  Google Scholar 

  25. Bosch A, Perret E, Desmaris N, Heard JM. Long-term and significant correction of brain lesions in adult mucopolysaccharidosis type VII mice using recombinant AAV vectors. Mol Ther. 2000;1:63–70.

    Article  CAS  PubMed  Google Scholar 

  26. Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A. 2000;97:3428–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frisella WA, O’Connor LH, Vogler CA, Roberts M, Walkley S, Levy B, Daly TM, Sands MS. Intracranial injection of recombinant adeno-associated virus improves cognitive function in a murine model of mucopolysaccharidosis type VII. Mol Ther. 2001;3:351–8.

    Article  CAS  PubMed  Google Scholar 

  28. Sferra TJ, Qu G, McNeely D, Rennard R, Clark KR, Lo WD, Johnson PR. Recombinant adeno-associated virus-mediated correction of lysosomal storage within the central nervous system of the adult mucopolysaccharidosis type VII mouse. Hum Gene Ther. 2000;11:507–19.

    Article  CAS  PubMed  Google Scholar 

  29. Skorupa AF, Fisher KJ, Wilson JM, Parente MK, Wolfe JH. Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp Neurol. 1999;160:17–27.

    Article  CAS  PubMed  Google Scholar 

  30. Watson GL, Sayles JN, Chen C, Elliger SS, Elliger CA, Raju NR, Kurtzman GJ, Podsakoff GM. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus. Gene Ther. 1998;5:1642–9.

    Article  CAS  PubMed  Google Scholar 

  31. During MJ, Kaplitt MG, Stern MB, Eidelberg D. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther. 2001;12:1589–91.

    CAS  PubMed  Google Scholar 

  32. Janson C, McPhee S, Bilaniuk L, Haselgrove J, Testaiuti M, Freese A, Wang DJ, Shera D, Hurh P, Rupin J, Saslow E, Goldfarb O, Goldberg M, Larijani G, Sharrar W, Liouterman L, Camp A, Kolodny E, Samulski J, Leone P. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther. 2002;13:1391–412.

    Article  CAS  PubMed  Google Scholar 

  33. De BP, Heguy A, Hackett NR, Ferris B, Leopold PL, Lee J, Pierre L, Gao G, Wilson JM, Crystal RG. High levels of persistent expression of alpha1-antitrypsin mediated by the nonhuman primate serotype rh.10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses. Mol Ther. 2006;13:67–76.

    Article  CAS  PubMed  Google Scholar 

  34. Passini MA, Dodge JC, Bu J, Yang W, Zhao Q, Sondhi D, Hackett NR, Kaminsky SM, Mao Q, Shihabuddin LS, Cheng SH, Sleat DE, Stewart GR, Davidson BL, Lobel P, Crystal RG. Intracranial delivery of CLN2 reduces brain pathology in a mouse model of classical late infantile neuronal ceroid lipofuscinosis. J Neurosci. 2006;26:1334–42.

    Article  CAS  PubMed  Google Scholar 

  35. Sondhi D, Hackett NR, Peterson DA, Stratton J, Baad M, Travis KM, Wilson JM, Crystal RG. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector. Mol Ther. 2007;15:481–91.

    Article  CAS  PubMed  Google Scholar 

  36. Sondhi D, Peterson DA, Giannaris EL, Sanders CT, Mendez BS, De B, Rostkowski AB, Blanchard B, Bjugstad K, Sladek Jr JR, Redmond Jr DE, Leopold PL, Kaminsky SM, Hackett NR, Crystal RG. AAV2-mediated CLN2 gene transfer to rodent and non-human primate brain results in long-term TPP-I expression compatible with therapy for LINCL. Gene Ther. 2005;12:1618–32.

    Article  CAS  PubMed  Google Scholar 

  37. Daly TM, Vogler C, Levy B, Haskins ME, Sands MS. Neonatal gene transfer leads to widespread correction of pathology in a murine model of lysosomal storage disease. Proc Natl Acad Sci U S A. 1999;96:2296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi T, Nakamura T, Hayashi A, Kamei M, Nakabayashi M, Okada AA, Tomita N, Kaneda Y, Tano Y. Inhibition of experimental choroidal neovascularization by overexpression of tissue inhibitor of metalloproteinases-3 in retinal pigment epithelium cells. Am J Ophthalmol. 2000;130:774–81.

    Article  CAS  PubMed  Google Scholar 

  39. Streilein JW. Unraveling immune privilege. Science. 1995;270:1158–9.

    Article  CAS  PubMed  Google Scholar 

  40. Sleat DE, Wiseman JA, El-Banna M, Kim KH, Mao Q, Price S, Macauley SL, Sidman RL, Shen MM, Zhao Q, Passini MA, Davidson BL, Stewart GR, Lobel P. A mouse model of classical late-infantile neuronal ceroid lipofuscinosis based on targeted disruption of the CLN2 gene results in a loss of tripeptidyl-peptidase I activity and progressive neurodegeneration. J Neurosci. 2004;24:9117–26.

    Article  CAS  PubMed  Google Scholar 

  41. Sondhi D, Peterson DA, Edelstein AM, del FK, Hackett NR, Crystal RG. Survival advantage of neonatal CNS gene transfer for late infantile neuronal ceroid lipofuscinosis. Exp Neurol. 2008;213:18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sondhi D, Johnson L, Purpura K, Monette S, Souweidane MM, Kaplitt MG, Kosofsky B, Yohay K, Ballon D, Dyke J, Kaminksy SM, Hackett NR, Crystal RG. Long-term expression and safety of administration of AAVrh.10hCLN2 to the brain of rats and nonhuman primates for the treatment of late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther Methods. 2012;23:324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hackett NR, Redmond DE, Sondhi D, Giannaris EL, Vassallo E, Stratton J, Qiu J, Kaminsky SM, Lesser ML, Fisch GS, Rouselle SD, Crystal RG. Safety of direct administration of AAV2(CU)hCLN2, a candidate treatment for the central nervous system manifestations of late infantile neuronal ceroid lipofuscinosis, to the brain of rats and nonhuman primates. Hum Gene Ther. 2005;16:1484–503.

    Article  CAS  PubMed  Google Scholar 

  44. Crystal RG, Sondhi D, Hackett NR, Kaminsky SM, Worgall S, Stieg P, Souweidane M, Hosain S, Heier L, Ballon D, Dinner M, Wisniewski K, Kaplitt M, Greenwald BM, Howell JD, Strybing K, Dyke J, Voss H. Clinical protocol. Administration of a replication-deficient adeno-associated virus gene transfer vector expressing the human CLN2 cDNA to the brain of children with late infantile neuronal ceroid lipofuscinosis. Hum Gene Ther. 2004;15:1131–54.

    Article  PubMed  Google Scholar 

  45. de Melo-Martin I, Sondhi D, Crystal RG. When ethics constrains clinical research: trial design of control arms in “greater than minimal risk” pediatric trials. Hum Gene Ther. 2011;22:1121–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Souweidane MM, Fraser JF, Arkin LM, Sondhi D, Hackett NR, Kaminsky SM, Heier L, Kosofsky BE, Worgall S, Crystal RG, Kaplitt MG. Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr. 2010;6:115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N, Dyke JP, Ballon D, Heier L, Greenwald BM, Christos P, Mazumdar M, Souweidane MM, Kaplitt MG, Crystal RG. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther. 2008;19:463–74.

    Article  CAS  PubMed  Google Scholar 

  48. Steinfeld R, Heim P, von GH, Meyer K, Ullrich K, Goebel HH, Kohlschutter A. Late infantile neuronal ceroid lipofuscinosis: quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet. 2002;112:347–54.

    Article  PubMed  Google Scholar 

  49. Orlin A, Sondhi D, Witmer MT, Wessel MM, Mezey JG, Kaminsky SM, Hackett NR, Yohay K, Kosofsky B, Souweidane MM, Kaplitt MG, D’Amico DJ, Crystal RG, Kiss S. Spectrum of ocular manifestations in CLN2-associated batten (Jansky-Bielschowsky) disease correlate with advancing age and deteriorating neurological function. PLoS One. 2013;8, e73128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dyke JP, Voss HU, Sondhi D, Hackett NR, Worgall S, Heier LA, Kosofsky BE, Ulug AM, Shungu DC, Mao X, Crystal RG, Ballon D. Assessing disease severity in late infantile neuronal ceroid lipofuscinosis using quantitative MR diffusion-weighted imaging. AJNR Am J Neuroradiol. 2007;28:1232–6.

    Article  CAS  PubMed  Google Scholar 

  51. Dyke JP, Sondhi D, Voss HU, Shungu DC, Mao X, Yohay K, Worgall S, Hackett NR, Hollmann C, Yeotsas ME, Jeong AL, Van de GB, Cao I, Kaminsky SM, Heier LA, Rudser KD, Souweidane MM, Kaplitt MG, Kosofsky B, Crystal RG, Ballon D. Assessment of disease severity in late infantile neuronal ceroid lipofuscinosis using multiparametric MR imaging. AJNR Am J Neuroradiol. 2013;34:884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Worgall S, Kekatpure MV, Heier L, Ballon D, Dyke JP, Shungu D, Mao X, Kosofsky B, Kaplitt MG, Souweidane MM, Sondhi D, Hackett NR, Hollmann C, Crystal RG. Neurological deterioration in late infantile neuronal ceroid lipofuscinosis. Neurology. 2007;69:521–35.

    Article  CAS  PubMed  Google Scholar 

  53. Akshoomoff N. Use of the Mullen scales of early learning for the assessment of young children with Autism Spectrum Disorders. Child Neuropsychol. 2006;12:269–77.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mullen EM. Mullen scales of early learning. Circle Pines, MN: American Guidance Service; 1995.

    Google Scholar 

  55. McCullough N, Parkes J, White-Koning M, Beckung E, Colver A. Reliability and validity of the Child Health QuestionnairePF-50 for European children with cerebral palsy. J Pediatr Psychol. 2009;34:41–50.

    Article  PubMed  Google Scholar 

  56. Veaugh-Geiss J, Conners CK, Sarkis EH, Winner PK, Ginsberg LD, Hemphill JM, Laurenza A, Barrows CE, Webster CJ, Stotka CJ, Asgharnejad M. GW320659 for the treatment of attention-deficit/hyperactivity disorder in children. J Am Acad Child Adolesc Psychiatry. 2002;41:914–20.

    Article  Google Scholar 

  57. Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat. 2012;33:42–63.

    Article  CAS  PubMed  Google Scholar 

  58. Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics. 2005;6:107–26.

    Article  PubMed  Google Scholar 

  59. Ioannidis JP. Materializing research promises: opportunities, priorities and conflicts in translational medicine. J Transl Med. 2004;2:5.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Arkin LM, Sondhi D, Worgall S, Suh LH, Hackett NR, Kaminsky SM, Hosain SA, Souweidane MM, Kaplitt MG, Dyke JP, Heier LA, Ballon DJ, Shungu DC, Wisniewski KE, Greenwald BM, Hollmann C, Crystal RG. Confronting the issues of therapeutic misconception, enrollment decisions, and personal motives in genetic medicine-based clinical research studies for fatal disorders. Hum Gene Ther. 2005;16:1028–36.

    Article  CAS  PubMed  Google Scholar 

  61. de Melo-Martin I, Sondhi D, Crystal RG. Novel therapies, high-risk pediatric research, and the prospect of benefit: learning from the ethical disagreements. Mol Ther. 2012;20:1095–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank N. Mohamed for editorial assistance. These studies were supported, in part, by NIH R01NS061848; Nathan’s Battle Foundation; and the Foundation for Life.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald G. Crystal MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sondhi, D., Crystal, R.G., Kaminsky, S.M. (2016). Gene Therapy for Inborn Errors of Metabolism: Batten Disease. In: Tuszynski, M. (eds) Translational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7654-3_7

Download citation

Publish with us

Policies and ethics