Skip to main content

GDNF and AADC Gene Therapy for Parkinson’s Disease

  • Chapter
  • First Online:
Translational Neuroscience

Abstract

The use of viral vectors to express therapeutics genes in Parkinson’s disease (PD) trials has been hindered by a lack of understanding of the principles that guide effective distribution of vectors within the basal ganglia, even when we have a strong expectation of efficacy based on experimentation in animal models. The major problems we have faced include (1) scale-up from small rodent and nonhuman primates (NHP) brains to humans, (2) understanding how viral vectors distribute within the brain parenchyma, (3) prediction of how viral particles are disseminated by neuronal projections after direct delivery to the putamen and substantia nigra, (4) the mechanism of action of the therapeutic gene on dopaminergic system, and (5) the relevance of animal models to idiopathic PD. In this chapter, we will address these important issues and will try to put them into the context of data that has been obtained from current and recent clinical trials. In particular, we will address therapeutic strategies aimed at restoring dopaminergic function by either expressing genes that encode enzymes responsible for synthesis of dopamine (DA) or expressing growth factors capable of upregulating DA function in the degenerated neurons. We will not address inhibition of outflow innervation from the striatum in PD patients by expressing glutamic acid decarboxylase (GAD) as this strategy is described in the dedicated chapter in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aminoff MJ. Parkinson’s disease. Neurol Clin. 2001;19(1):119–28, vi.

    Article  CAS  PubMed  Google Scholar 

  2. Braak H, Braak E. Pathoanatomy of Parkinson’s disease. J Neurol. 2000;247 Suppl 2:II3–10.

    PubMed  Google Scholar 

  3. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain. 2013;136(Pt 8):2419–31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Palfi S. Towards gene therapy for Parkinson’s disease. Lancet Neurol. 2008;7(5):375–6.

    Article  PubMed  Google Scholar 

  5. Yin D, Valles FE, Fiandaca MS, Bringas J, Gimenez F, Berger MS, et al. Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage. 2009;187(1):46–51.

    Google Scholar 

  6. Bartus RT, Herzog CD, Chu Y, Wilson A, Brown L, Siffert J, et al. Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson’s disease and nonhuman primate brains. Mov Disord. 2011;26(1):27–36.

    Article  PubMed  Google Scholar 

  7. Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology. 2008;70(21):1980–3.

    Article  CAS  PubMed  Google Scholar 

  8. Marks Jr WJ, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010;9(12):1164–72.

    Article  CAS  PubMed  Google Scholar 

  9. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91(6):2076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, et al. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006;14(1):69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fiandaca MS, Forsayeth JR, Dickinson PJ, Bankiewicz KS. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics. 2008;5(1):123–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Richardson RM, Varenika V, Forsayeth JR, Bankiewicz KS. Future applications: gene therapy. Neurosurg Clin N Am. 2009;20(2):205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fiandaca MS, Varenika V, Eberling J, McKnight T, Bringas J, Pivirotto P, et al. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage. 2009;47 Suppl 2:T27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Richardson RM, Kells AP, Martin AJ, Larson PS, Starr PA, Piferi PG, et al. Novel platform for MRI-guided convection-enhanced delivery of therapeutics: preclinical validation in nonhuman primate brain. Stereotact Funct Neurosurg. 2011;89(3):141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Richardson RM, Kells AP, Rosenbluth KH, Salegio EA, Fiandaca MS, Larson PS, et al. Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther. 2011;19(6):1048–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Su X, Kells AP, Aguilar Salegio EA, Richardson RM, Hadaczek P, Beyer J, et al. Real-time MR imaging with Gadoteridol predicts distribution of transgenes after convection-enhanced delivery of AAV2 vectors. Mol Ther. 2010;18(8):1490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krauze MT, McKnight TR, Yamashita Y, Bringas J, Noble CO, Saito R, et al. Real-time visualization and characterization of liposomal delivery into the monkey brain by magnetic resonance imaging. Brain Res Brain Res Protoc. 2005;16(1–3):20–6.

    Article  CAS  PubMed  Google Scholar 

  18. Yin D, Zhai Y, Gruber HE, Ibanez CE, Robbins JM, Kells AP, et al. Convection-enhanced delivery improves distribution and efficacy of tumor-selective retroviral replicating vectors in a rodent brain tumor model. Cancer Gene Ther. 2013;20(6):336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen PY, Ozawa T, Drummond DC, Kalra A, Fitzgerald JB, Kirpotin DB, et al. Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts. Neuro Oncol. 2013;15(2):189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varenika V, Dickenson P, Bringas J, LeCouteur R, Higgins R, Park JW, et al. Real-time imaging of CED in the brain permits detection of infusate leakage. J Neurosurg. 2008;109:874–80.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Varenika V, Kells AP, Valles F, Hadaczek P, Forsayeth J, Bankiewicz KS. Controlled dissemination of AAV vectors in the primate brain. Prog Brain Res. 2009;175:163–72.

    Article  CAS  PubMed  Google Scholar 

  22. Sykova E. Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience. 2004;129(4):861–76.

    Article  CAS  PubMed  Google Scholar 

  23. Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg. 1999;90(2):315–20.

    Article  CAS  PubMed  Google Scholar 

  24. Krauze MT, Saito R, Noble C, Bringas J, Forsayeth J, McKnight TR, et al. Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp Neurol. 2005;196(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  25. Szerlip NJ, Walbridge S, Yang L, Morrison PF, Degen JW, Jarrell ST, et al. Real-time imaging of convection-enhanced delivery of viruses and virus-sized particles. J Neurosurg. 2007;107(3):560–7.

    Article  CAS  PubMed  Google Scholar 

  26. Krauze MT, Saito R, Noble C, Tamas M, Bringas J, Park JW, et al. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg. 2005;103(5):923–9.

    Article  PubMed  Google Scholar 

  27. Sanftner LM, Sommer JM, Suzuki BM, Smith PH, Vijay S, Vargas JA, et al. AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp Neurol. 2005;194(2):476–83.

    Article  CAS  PubMed  Google Scholar 

  28. Yin D, Forsayeth J, Bankiewicz KS. Optimized cannula design and placement for convection-enhanced delivery in rat striatum. J Neurosci Methods. 2010;187(1):46–51.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Valles F, Fiandaca MS, Bringas J, Dickinson P, LeCouteur R, Higgins R, et al. Anatomic compression caused by high-volume convection-enhanced delivery to the brain. Neurosurgery. 2009;65(3):579–85. discussion 85–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Valles F, Fiandaca MS, Eberling JL, Starr PA, Larson PS, Christine CW, et al. Qualitative imaging of adeno-associated virus serotype 2-human aromatic L-amino acid decarboxylase gene therapy in a phase I study for the treatment of Parkinson disease. Neurosurgery. 2010;67(5):1377–85.

    Article  PubMed  Google Scholar 

  31. Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology. 2009;73(20):1662–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yin D, Richardson RM, Fiandaca MS, Bringas J, Forsayeth J, Berger MS, et al. Cannula placement for effective convection-enhanced delivery in the non-human primate thalamus and brainstem: implications for clinical delivery of therapeutics. J Neurosurg. 2010;113(2):240–8.

    Article  PubMed  Google Scholar 

  33. Truwit CL, Liu H. Prospective stereotaxy: a novel method of trajectory alignment using real-time image guidance. J Magn Reson Imaging. 2001;13(3):452–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hall WA, Liu H, Martin AJ, Maxwell RE, Truwit CL. Brain biopsy sampling by using prospective stereotaxis and a trajectory guide. J Neurosurg. 2001;94(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  35. Martin AJ, Hall WA, Roark C, Starr PA, Larson PS, Truwit CL. Minimally invasive precision brain access using prospective stereotaxy and a trajectory guide. J Magn Reson Imaging. 2008;27(4):737–43.

    Article  PubMed  Google Scholar 

  36. Martin AJ, Larson PS, Ostrem JL, Keith Sootsman W, Talke P, Weber OM, et al. Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn Reson Med. 2005;54(5):1107–14.

    Article  PubMed  Google Scholar 

  37. Martin AJ, Larson PS, Ostrem JL, Starr PA. Interventional magnetic resonance guidance of deep brain stimulator implantation for Parkinson disease. Top Magn Reson Imaging. 2009;19(4):213–21.

    Article  PubMed  Google Scholar 

  38. Starr PA, Martin AJ, Larson PS. Implantation of deep brain stimulator electrodes using interventional MRI. Neurosurg Clin N Am. 2009;20(2):193–203.

    Article  PubMed  Google Scholar 

  39. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78(12):6381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rabinowitz JE, Samulski RJ. Building a better vector: the manipulation of AAV virions. Virology. 2000;278(2):301–8.

    Article  CAS  PubMed  Google Scholar 

  41. Koerber JT, Klimczak R, Jang JH, Dalkara D, Flannery JG, Schaffer DV. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther. 2009;17(12):2088–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol. 2006;24(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  43. Li W, Zhang L, Johnson JS, Zhijian W, Grieger JC, Ping-Jie X, et al. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium. Mol Ther. 2009;17(12):2067–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gray SJ, Blake BL, Criswell HE, Nicolson SC, Samulski RJ, McCown TJ. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther. 2010;18(3):570–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol. 2010;28(1):79–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ciesielska A, Mittermeyer G, Hadaczek P, Kells AP, Forsayeth J, Bankiewicz KS. Anterograde axonal transport of AAV2-GDNF in rat basal ganglia. Mol Ther. 2011;19(5):922–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kells AP, Hadaczek P, Yin D, Bringas J, Varenika V, Forsayeth J, et al. Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc Natl Acad Sci U S A. 2009;106(7):2407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hadaczek P, Mirek H, Bringas J, Cunningham J, Bankiewicz K. Basic fibroblast growth factor enhances transduction, distribution, and axonal transport of adeno-associated virus type 2 vector in rat brain. Hum Gene Ther. 2004;15(5):469–79.

    Article  CAS  PubMed  Google Scholar 

  49. Salegio EA, Samaranch L, Kells AP, Mittermeyer G, San Sebastian W, Zhou S, et al. Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther. 2013;20(3):348–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. San Sebastian W, Samaranch L, Heller G, Kells AP, Bringas J, Pivirotto P, et al. Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Ther. 2013;20(12):1178–83.

    Article  CAS  PubMed  Google Scholar 

  51. Marks Jr WJ, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 2008;7(5):400–8.

    Article  PubMed  Google Scholar 

  52. Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther. 2010;18(9):1731–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–19.

    Article  CAS  PubMed  Google Scholar 

  54. Bartus RT, Weinberg MS, Samulski RJ. Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol Ther. 2014;22(3):487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yin D, Valles FE, Fiandaca MS, Forsayeth J, Larson P, Starr P, et al. Striatal volume differences between non-human and human primates. J Neurosci Methods. 2009;176(2):200–5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J, et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther. 2006;14(4):564–70.

    Article  CAS  PubMed  Google Scholar 

  57. Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther. 2010;18(8):1458–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J, et al. A dose-ranging study of AAV-hAADC therapy in parkinsonian monkeys. Mol Ther. 2006;14(4):571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J, et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol. 2000;164(1):2–14.

    Article  CAS  PubMed  Google Scholar 

  60. Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, et al. Long-term evaluation of a Phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther. 2012;23(4):377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Engele J, Schubert D, Bohn MC. Conditioned media derived from glial cell lines promote survival and differentiation of dopaminergic neurons in vitro: role of mesencephalic glia. J Neurosci Res. 1991;30:359–71.

    Article  CAS  PubMed  Google Scholar 

  62. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260(5111):1130–2.

    Article  CAS  PubMed  Google Scholar 

  63. Lin LF, Zhang TJ, Collins F, Armes LG. Purification and initial characterization of rat B49 glial cell line- derived neurotrophic factor. J Neurochem. 1994;63(2):758–68.

    Article  CAS  PubMed  Google Scholar 

  64. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002;3(5):383–94.

    Article  CAS  PubMed  Google Scholar 

  65. Grondin R, Zhang Z, Ai Y, Gash DM, Gerhardt GA. Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases. Prog Drug Res. 2003;61:101–23.

    CAS  PubMed  Google Scholar 

  66. Bjorklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ. Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res. 2000;886:82–98.

    Article  CAS  PubMed  Google Scholar 

  67. Choi-Lundberg DL. An adenoviral vector encoding glial cell line-derived neurotrophic factor (GDNF) protects rat dopaminergic neurons from degeneration. Ph.D. thesis, University of Rochester, Rochester, NY; 1997.

    Google Scholar 

  68. Connor B, Kozlowski DA, Schallert T, Tillerson JL, Davidson BL, Bohn MC. Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther. 1999;6:1936–51.

    Article  CAS  PubMed  Google Scholar 

  69. Kirik D, Rosenblad C, Bjorklund A, Mandel RJ. Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci. 2000;20(12):4686–700.

    CAS  PubMed  Google Scholar 

  70. Kirik D, Rosenblad C, Bjorklund A. Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci. 2000;12(11):3871–82.

    Article  CAS  PubMed  Google Scholar 

  71. Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C, et al. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci. 2005;25(4):769–77.

    Article  CAS  PubMed  Google Scholar 

  72. Johnston LC, Eberling J, Pivirotto P, Hadaczek P, Federoff HJ, Forsayeth J, et al. Clinically relevant effects of convection-enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged rhesus monkeys. Hum Gene Ther. 2009;20(5):497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Su X, Kells AP, Huang EJ, Lee HS, Hadaczek P, Beyer J, et al. Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum Gene Ther. 2009;20(12):1627–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P, et al. Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci. 2010;30(28):9567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Eberling JL, Bankiewicz KS, Jordan S, VanBrocklin HF, Jagust WJ. PET studies of functional compensation in a primate model of Parkinson’s disease. Neuroreport. 1997;8(12):2727–33.

    Article  CAS  PubMed  Google Scholar 

  76. Bartus RT, Baumann TL, Siffert J, Herzog CD, Alterman R, Boulis N, et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology. 2013;80(18):1698–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hadaczek P, Wu G, Sharma N, Cieselska A, Bankiewicz K, Davidow AL, et al. GDNF signaling implemented by GM1 ganglioside; failure in Parkinson’s disease and GM1-deficient murine model. Exp Neurol. 2014;263:177–89.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystof Bankiewicz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bankiewicz, K., Sebastian, W.S., Samaranch, L., Forsayeth, J. (2016). GDNF and AADC Gene Therapy for Parkinson’s Disease. In: Tuszynski, M. (eds) Translational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7654-3_4

Download citation

Publish with us

Policies and ethics