Skip to main content

Deep Brain Stimulation for Neuropsychiatric Disorders

  • Chapter
  • First Online:
Translational Neuroscience

Abstract

Neuropsychiatric disorders that are refractory to best medical management continue to pose a significant challenge. Advances in molecular neuroscience and neuroimaging have started to reveal how dysfunction in specific limbic networks mediates these disorders. This knowledge, along with concurrent advances in neurosurgical techniques, has lead to the increasing use of deep brain stimulation (DBS) for the treatment of neuropsychiatric disorders. Here we review the role of DBS for obsessive-compulsive disorder (OCD), depression, addiction, post-traumatic stress disorder (PTSD), and anorexia nervosa (AN). We emphasize the use of translational techniques such as neuroimaging, molecular neuroscience, and animal models in guiding and evaluating the use of DBS for these challenging disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egas Moniz. How I came to perform prefrontal leucotomy. J Med (Oporto). 1949;14:513–5.

    CAS  Google Scholar 

  2. Lapidus KAB, Kopell BH, Ben-Haim S, Rezai AR, Goodman WK. History of psychosurgery: a psychiatrist’s perspective. World Neurosurg. 2013;80:S27.e1–16.

    Article  Google Scholar 

  3. Leiphart JW, Valone FH. Stereotactic lesions for the treatment of psychiatric disorders. J Neurosurg. 2010;113:1204–11.

    Article  PubMed  Google Scholar 

  4. Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013;77:406–24.

    Article  CAS  PubMed  Google Scholar 

  5. Catani M, Dell'acqua F, Thiebaut de Schotten M. A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev. 2013;37:1724–37.

    Article  PubMed  Google Scholar 

  6. Dougherty DD, Rauch SL, Jenike MA. Pharmacotherapy for obsessive-compulsive disorder. J Clin Psychol. 2004;60:1195–202.

    Article  PubMed  Google Scholar 

  7. Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the national comorbidity survey replication. Mol Psychiatry. 2010;15:53–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robison RA, Taghva A, Liu CY, Apuzzo MLJ. Surgery of the mind, mood, and conscious state: an idea in evolution. World Neurosurg. 2013;80:S2–26.

    Article  PubMed  Google Scholar 

  9. Knight G. Stereotactic tractotomy in the surgical treatment of mental illness. J Neurol Neurosurg Psychiatr. 1965;28:304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ballantine HT, Bouckoms AJ, Thomas EK, Giriunas IE. Treatment of psychiatric illness by stereotactic cingulotomy. Biol Psychiatry. 1987;22:807–19.

    Article  PubMed  Google Scholar 

  11. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet. 1999;354:1526.

    Article  CAS  PubMed  Google Scholar 

  12. Nuttin BJ, Gabriëls LA, Cosyns PR, Meyerson BA, Andréewitch S, Sunaert SG, et al. Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery. 2003;52:1263–72. Discussion 1272–4.

    Article  PubMed  Google Scholar 

  13. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology. 2006;31:2384–93.

    Article  PubMed  Google Scholar 

  14. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry. 2010;67:1061–8.

    Article  PubMed  Google Scholar 

  15. Hamani C, Pilitsis J, Rughani AI, Rosenow JM, Patil PG, Slavin KS, et al. Deep brain stimulation for obsessive-compulsive disorder: systematic review and evidence-based guideline sponsored by the American society for stereotactic and functional neurosurgery and the congress of neurological surgeons (CNS) and endorsed by the CNS and American association of neurological surgeons. Neurosurgery. 2014;75:327–33.

    Article  PubMed  Google Scholar 

  16. Mallet L, Mesnage V, Houeto J-L, Pelissolo A, Yelnik J, Behar C, et al. Compulsions, Parkinson’s disease, and stimulation. Lancet. 2002;360:1302–4.

    Article  PubMed  Google Scholar 

  17. Jiménez F, Velasco F, Salín-Pascual R, Velasco M, Nicolini H, Velasco AL, et al. Neuromodulation of the inferior thalamic peduncle for major depression and obsessive compulsive disorder. Acta Neurochir Suppl. 2007;97:393–8.

    Article  PubMed  Google Scholar 

  18. Mallet L, Polosan M, Jaafari N, Baup N, Welter M-L, Fontaine D, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med. 2008;359:2121–34.

    Article  CAS  PubMed  Google Scholar 

  19. Mian MK, Campos M, Sheth SA, Eskandar EN. Deep brain stimulation for obsessive-compulsive disorder: past, present, and future. Neurosurg Focus. 2010;29, E10.

    Article  PubMed  Google Scholar 

  20. Hamani C, Temel Y. Deep brain stimulation for psychiatric disease: contributions and validity of animal models. Sci Transl Med. 2012;4:142rv8.

    Article  PubMed  Google Scholar 

  21. Tye KM, Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci. 2012;13:251–66.

    Article  CAS  PubMed  Google Scholar 

  22. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324:354–9.

    Article  CAS  PubMed  Google Scholar 

  23. Burguière E, Monteiro P, Feng G, Graybiel AM. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science. 2013;340:1243–6.

    Article  PubMed  Google Scholar 

  24. Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science. 2013;340:1234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henderson JM. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang JC, Papadimitriou G, Eckbo R, Yeterian EH, Liang L, Dougherty DD, et al. Multi-tensor investigation of orbitofrontal cortex tracts affected in subcaudate tractotomy. Brain Imaging Behav. 2015;9(2):342–52

    Google Scholar 

  27. Pouratian N, Zheng Z, Bari AA, Behnke E, Elias WJ, DeSalles AAF. Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg. 2011;115(5):995–1004.

    Article  PubMed  Google Scholar 

  28. Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL, Corbetta M, et al. Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage. 2013;80:169–89.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Figee M, Luigjes J, Smolders R, Valencia-Alfonso C-E, van Wingen G, de Kwaasteniet B, et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat Publ Group. 2013;16:386–7.

    CAS  Google Scholar 

  30. Lépine J-P, Briley M. The increasing burden of depression. Neuropsychiatr Dis Treat. 2011;7:3–7.

    PubMed  PubMed Central  Google Scholar 

  31. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    Article  CAS  PubMed  Google Scholar 

  32. Schlaepfer TE, Bewernick BH, Kayser S, Hurlemann R, Coenen VA. Deep brain stimulation of the human reward system for major depression—rationale, outcomes and outlook. Neuropsychopharmacology. 2014;39:1303–14.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology. 2008;33:368–77.

    Article  PubMed  Google Scholar 

  34. Jiménez F, Velasco F, Salin-Pascual R, Hernández JA, Velasco M, Criales JL, et al. A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery. 2005;57:585–93. Discussion 585–93.

    Article  PubMed  Google Scholar 

  35. Malone DA, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sartorius A, Henn FA. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses. 2007;69:1305–8.

    Article  PubMed  Google Scholar 

  37. Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM. The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry. 2011;69:301–8.

    Article  PubMed  Google Scholar 

  38. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry. 2000;48:830–43.

    Article  CAS  PubMed  Google Scholar 

  39. Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3:1049–56.

    Article  CAS  PubMed  Google Scholar 

  40. Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS, et al. Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatry. 2011;168:502–10.

    Article  PubMed  Google Scholar 

  41. Morishita T, Fayad SM, Higuchi M-A, Nestor KA, Foote KD. Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics. 2014;11:475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coenen VA, Schlaepfer TE, Allert N, Mdler B. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation. Int Rev Neurobiol. 2012;107:207–34 (1st edn. Elsevier Inc.).

    Article  PubMed  Google Scholar 

  43. Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE, Chaturvedi A, et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2014;76(12):963–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rea E, Rummel J, Schmidt TT, Hadar R, Heinz A, Mathé AA, et al. Anti-anhedonic effect of deep brain stimulation of the prefrontal cortex and the dopaminergic reward system in a genetic rat model of depression: an intracranial self-stimulation paradigm study. Brain Stimul. 2014;7:21–8.

    Article  PubMed  Google Scholar 

  45. Hamani C, Amorim BO, Wheeler AL, Diwan M, Driesslein K, Covolan L, et al. Deep brain stimulation in rats: different targets induce similar antidepressant-like effects but influence different circuits. Neurobiol Dis. 2014;71C:205–14.

    Article  Google Scholar 

  46. Vassoler FM, White SL, Hopkins TJ, Guercio LA, Espallergues J, Berton O, et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation. J Neurosci. 2013;33:14446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Müller UJ, Voges J, Steiner J, Galazky I, Heinze H-J, Möller M, et al. Deep brain stimulation of the nucleus accumbens for the treatment of addiction. Ann N Y Acad Sci. 2013;1282:119–28.

    Article  PubMed  Google Scholar 

  48. Gao G, Wang X, He S, Li W, Wang Q, Liang Q, et al. Clinical study for alleviating opiate drug psychological dependence by a method of ablating the nucleus accumbens with stereotactic surgery. Stereotact Funct Neurosurg. 2003;81:96–9104.

    Article  PubMed  Google Scholar 

  49. Ge S, Chang C, Adler JR, Zhao H, Chang X, Gao L, et al. Long-term changes in the personality and psychopathological profile of opiate addicts after nucleus accumbens ablative surgery are associated with treatment outcome. Stereotact Funct Neurosurg. 2013;91:30–44.

    Article  PubMed  Google Scholar 

  50. Li N, Wang J, Wang X-L, Chang C-W, Ge S-N, Gao L, et al. Nucleus accumbens surgery for addiction. World Neurosurg. 2013;80(3–4):S28.e9–19.

    Google Scholar 

  51. Kuhn J, Lenartz D, Huff W, Lee S, Koulousakis A, Klosterkoetter J, et al. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J Neurol Neurosurg Psychiatry. 2007;78:1152–3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kuhn J, Bauer R, Pohl S, Lenartz D, Huff W, Kim EH, et al. Observations on unaided smoking cessation after deep brain stimulation of the nucleus accumbens. Eur Addict Res. 2009;15:196–201.

    Article  CAS  PubMed  Google Scholar 

  53. Mantione M, van de Brink W, Schuurman PR, Denys D. Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery. 2010;66, E218. Discussion E218.

    Article  PubMed  Google Scholar 

  54. Muller UJ, Sturm V, Voges J, Heinze H-J, Galazky I, Heldmann M, et al. Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry. 2009;42:288–91.

    Article  CAS  PubMed  Google Scholar 

  55. Voges J, Müller U, Bogerts B, Münte T, Heinze H-J. Deep brain stimulation surgery for alcohol addiction. World Neurosurg. 2013;80:S28.e21–31.

    Article  Google Scholar 

  56. Kuhn J, Gründler TOJ, Bauer R, Huff W, Fischer AG, Lenartz D, et al. Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring. Addict Biol. 2011;16:620–3.

    Article  PubMed  Google Scholar 

  57. Kuhn J, Möller M, Treppmann JF, Bartsch C, Lenartz D, Gruendler TOJ, et al. Deep brain stimulation of the nucleus accumbens and its usefulness in severe opioid addiction. Mol Psychiatry. 2014;19:145–6.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou H, Xu J, Jiang J. Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry. 2011;69:e41–2.

    Article  PubMed  Google Scholar 

  59. Valencia-Alfonso C-E, Luigjes J, Smolders R, Cohen MX, Levar N, Mazaheri A, et al. Effective deep brain stimulation in heroin addiction: a case report with complementary intracranial electroencephalogram. Biol Psychiatry. 2012;71:e35–7.

    Article  PubMed  Google Scholar 

  60. Stuber GD. Dissecting the neural circuitry of addiction and psychiatric disease with optogenetics. Neuropsychopharmacology. 2010;35:341–2.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Britt JP, Bonci A. Optogenetic interrogations of the neural circuits underlying addiction. Curr Opin Neurobiol. 2013;23:539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, et al. The WU-Minn human connectome project: an overview. Neuroimage. 2013;80:62–79.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Breslau N. Outcomes of posttraumatic stress disorder. J Clin Psychiatry. 2001;62:55–9. Suppl 17.

    PubMed  Google Scholar 

  64. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62:593–602.

    Article  PubMed  Google Scholar 

  65. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62:617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Armony JL, Corbo V, Clément M-H, Brunet A. Amygdala response in patients with acute PTSD to masked and unmasked emotional facial expressions. Am J Psychiatry. 2005;162:1961–3.

    Article  PubMed  Google Scholar 

  67. Protopopescu X, Pan H, Tuescher O, Cloitre M, Goldstein M, Engelien W, et al. Differential time courses and specificity of amygdala activity in posttraumatic stress disorder subjects and normal control subjects. Biol Psychiatry. 2005;57:464–73.

    Article  PubMed  Google Scholar 

  68. Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, et al. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch Gen Psychiatry. 2004;61:168–76.

    Article  PubMed  Google Scholar 

  69. Koenigs M, Huey ED, Raymont V, Cheon B, Solomon J, Wassermann EM, et al. Focal brain damage protects against post-traumatic stress disorder in combat veterans. Nat Neurosci. 2008;11:232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koenigs M, Grafman J. Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist. 2009;15:540–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Langevin J-P, De Salles AAF, Kosoyan HP, Krahl SE. Deep brain stimulation of the amygdala alleviates post-traumatic stress disorder symptoms in a rat model. J Psychiatr Res. 2010;44:1241–5.

    Article  PubMed  Google Scholar 

  72. Stidd DA, Vogelsang K, Krahl SE, Langevin J-P, Fellous J-M. Amygdala deep brain stimulation is superior to paroxetine treatment in a rat model of posttraumatic stress disorder. Brain Stimul. 2013;6(6):837–44.

    Article  PubMed  Google Scholar 

  73. Yan X, Brown AD, Lazar M, Cressman VL, Henn-Haase C, Neylan TC, et al. Spontaneous brain activity in combat related PTSD. Neurosci Lett. 2013;547:1–5.

    Article  CAS  PubMed  Google Scholar 

  74. Brown VM, LaBar KS, Haswell CC, Gold AL, Mid-Atlantic MIRECC Workgroup, McCarthy G, et al. Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder. Neuropsychopharmacology. 2014;39:351–9.

    PubMed  Google Scholar 

  75. Rabinak CA, Angstadt M, Welsh RC, Kenndy AE, Lyubkin M, Martis B, et al. Altered amygdala resting-state functional connectivity in post-traumatic stress disorder. Front Psychiatry. 2011;2:62.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sripada RK, King AP, Garfinkel SN, Wang X, Sripada CS, Welsh RC, et al. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J Psychiatry Neurosci. 2012;37:241–9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Koek RJ, Langevin J-P, Krahl SE, Kosoyan HJ, Schwartz HN, Chen JW, et al. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation. Trials. 2014;15:356.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sturm V, Fricke O, Bührle CP, Lenartz D, Maarouf M, Treuer H, et al. DBS in the basolateral amygdala improves symptoms of autism and related self-injurious behavior: a case report and hypothesis on the pathogenesis of the disorder. Front Hum Neurosci. 2012;6:341.

    PubMed  PubMed Central  Google Scholar 

  79. Kent AR, Grill WM. Analysis of deep brain stimulation electrode characteristics for neural recording. J Neural Eng. 2014;11:046010.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hosain MK, Kouzani A, Tye S. Closed loop deep brain stimulation: an evolving technology. Australas Phys Eng Sci Med. 2014;37(4):619–34.

    Article  PubMed  Google Scholar 

  81. Papadopoulos FC, Ekbom A, Brandt L, Ekselius L. Excess mortality, causes of death and prognostic factors in anorexia nervosa. Br J Psychiatry. 2009;194:10–7.

    Article  PubMed  Google Scholar 

  82. Drury MO. An emergency leucotomy. Br Med J. 1950;2:609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lipsman N, Woodside DB, Giacobbe P, Lozano AM. Neurosurgical treatment of anorexia nervosa: review of the literature from leucotomy to deep brain stimulation. Eur Eat Disord Rev. 2013;21:428–35.

    Article  PubMed  Google Scholar 

  84. Barbier J, Gabriëls L, Van Laere K, Nuttin B. Successful anterior capsulotomy in comorbid anorexia nervosa and obsessive-compulsive disorder: case report. Neurosurgery. 2011;69:E745–51. Discussion E751.

    Article  PubMed  Google Scholar 

  85. Laćan G, De Salles AAF, Gorgulho AA, Krahl SE, Frighetto L, Behnke EJ, et al. Modulation of food intake following deep brain stimulation of the ventromedial hypothalamus in the vervet monkey. Laboratory investigation. J Neurosurg. 2008;108:336–42.

    Article  PubMed  Google Scholar 

  86. van der Plasse G, Schrama R, van Seters SP, Vanderschuren LJMJ, Westenberg HGM. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS One. 2012;7, e33455.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Welkenhuysen M, van Kuyck K, Das J, Sciot R, Nuttin B. Electrical stimulation in the lateral hypothalamus in rats in the activity-based anorexia model. Neurosurg Focus. 2008;25, E7.

    Article  PubMed  Google Scholar 

  88. Israël M, Steiger H, Kolivakis T, McGregor L, Sadikot AF. Deep brain stimulation in the subgenual cingulate cortex for an intractable eating disorder. Biol Psychiatry. 2010;67:e53–4.

    Article  PubMed  Google Scholar 

  89. McLaughlin NCR, Didie ER, Machado AG, Haber SN, Eskandar EN, Greenberg BD. Improvements in anorexia symptoms after deep brain stimulation for intractable obsessive-compulsive disorder. Biol Psychiatry. 2013;73:e29–31.

    Article  PubMed  Google Scholar 

  90. Lipsman N, Woodside DB, Giacobbe P, Hamani C, Carter JC, Norwood SJ, et al. Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet. 2013;381:1361–70.

    Article  PubMed  Google Scholar 

  91. Kringelbach ML, Green AL, Aziz TZ. Balancing the brain: resting state networks and deep brain stimulation. Front Integr Neurosci. 2011;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ausaf A. Bari MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bari, A.A., King, N.K.K., Lipsman, N., Lozano, A.M. (2016). Deep Brain Stimulation for Neuropsychiatric Disorders. In: Tuszynski, M. (eds) Translational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7654-3_26

Download citation

Publish with us

Policies and ethics