Skip to main content

Rehabilitation-Dependent Neural Plasticity After Spinal Cord Injury

  • Chapter
  • First Online:
Translational Neuroscience

Abstract

Complex movements are programmed in the central nervous system (CNS) and adapted by proprioceptive feedback. The selection of and interaction between different sources of afferent input is task dependent. Simple stretch reflexes are thought to be involved primarily in the control of focal movement. For more complex motor behaviors such as locomotion, afferent input related to load and hip-joint position probably has an important role in the proprioceptive contribution to the activation pattern of the leg muscles. Advances in our understanding of movement control allow us to define more precisely the requirements for the rehabilitation of patients with movement disorders. Accordingly, acknowledging the discrepancy between spasticity as assessed by clinical bedside testing and spasticity as presented in movement disorders affecting gait is essential to appreciate the true impact of spasticity. Central motor lesions are associated with a loss of supraspinal drive and defective use of afferent input. These changes lead to paresis and maladaptation of the movement pattern. Secondary changes in mechanical muscle fiber and collagen tissue result in spastic muscle tone, which in part compensates for paresis and allows functional movements on a simpler level of organization. The respective contributions to an aberrant gait pattern are complex and the resolution benefits from applying detailed kinematic movement analyses complementary to clinical measures to reveal changes in motor control. The distinct capacity of subjects with an incomplete spinal cord injury (iSCI) to remain able to modulate time–distance parameters but revealing complex impairments of intralimb coordination and the dissimilar responsiveness to rehabilitative interventions reveal distinct domains of neural control of walking. More sensitive outcome measures will be essential to uncover the respective contributions of restitution (i.e., repair of damaged neural structures) and mechanisms attributable to adaptation and compensatory movement strategies to rehabilitation-dependent functional improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6minWT:

6-min walk test

10MWT:

10-m walk test

AIS:

ASIA impairment scale

ASIA:

American Spinal Injury Association

BDNF:

Bone-derived neurotrophic factor

CNS:

Central nervous system

CST:

Corticospinal tract

EMG:

Electromyography

FES:

Functional electrical stimulation

(i)SCI:

(incomplete) Spinal cord injury

ISNCSCI:

International Standards for Neurological Classification of Spinal Cord Injury

MEP:

Motor-evoked potential

PCA:

Principal component analysis

(r)TMS:

(repetitive) Transcranial magnetic stimulation

SCIM:

Spinal cord independence measure

SSEP:

Somatosensory-evoked potential

WISCI:

Walking index for spinal cord injury

References

  1. Latash M, Anson J. What are “normal movements” in atypic populations? Behav Brain Sci. 1996;19:55–106.

    Article  Google Scholar 

  2. Dietz V. Spasticity: exaggerated reflexes of movement disorder? In: Fossberg H, Hirschfeld H, editors. Movement disorders in children. Basel: Karger; 1992. p. 225–33.

    Google Scholar 

  3. Dietz V. Do human bipeds use quadrupedal coordination? Trends Neurosci. 2002;25(9):462–7.

    Article  PubMed  Google Scholar 

  4. Schomburg ED. Spinal sensorimotor systems and their supraspinal control. Neurosci Res. 1990;7(4):265–340.

    Article  CAS  PubMed  Google Scholar 

  5. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986;55(6):1369–81.

    CAS  PubMed  Google Scholar 

  6. Dietz V. Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev. 1992;72(1):33–69.

    CAS  PubMed  Google Scholar 

  7. MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Phys Ther. 2002;82:69–83.

    PubMed  Google Scholar 

  8. Dietz V. Proprioception and locomotor disorders. Nat Rev Neurosci. 2002;3(10):781–90.

    Article  CAS  PubMed  Google Scholar 

  9. Michel J, van Hedel HJ, Dietz V. Obstacle stepping involves spinal anticipatory activity associated with quadrupedal limb coordination. Eur J Neurosci. 2008;27(7):1867–75.

    Article  CAS  PubMed  Google Scholar 

  10. Lance J. Symposium synopsis. In: Feldman R, Young R, Koells W, editors. Spasticity: disordered motor control. Chicago: Year Book; 1980. p. 17–24.

    Google Scholar 

  11. Baezner H, Hennerici M. From trepidant abasia to motor network failure–gait disorders as a consequence of subcortical vascular encephalopathy (SVE): review of historical and contemporary concepts. J Neurol Sci. 2005;229–230:81–8.

    Article  PubMed  Google Scholar 

  12. Dietz V. Spastic movement disorder: what is the impact of research on clinical practice? J Neurol Neurosurg Psychiatry. 2003;74(6):820–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dietz V. Spinal cord pattern generators for locomotion. Clin Neurophysiol. 2003;114(8):1379–89.

    Article  CAS  PubMed  Google Scholar 

  14. Lamontagne A, Stephenson JL, Fung J. Physiological evaluation of gait disturbances post stroke. Clin Neurophysiol. 2007;118(4):717–29.

    Article  PubMed  Google Scholar 

  15. Klebe S, Stolze H, Kopper F, Lorenz D, Wenzelburger R, Volkmann J, et al. Gait analysis of sporadic and hereditary spastic paraplegia. J Neurol. 2004;251(5):571–8.

    Article  CAS  PubMed  Google Scholar 

  16. Mendell LM. Modifiability of spinal synapses. Physiol Rev. 1984;64(1):260–324.

    CAS  PubMed  Google Scholar 

  17. Carr LJ, Harrison LM, Evans AL, Stephens JA. Patterns of central motor reorganization in hemiplegic cerebral palsy. Brain. 1993;116(Pt 5):1223–47.

    Article  PubMed  Google Scholar 

  18. Nacimiento W, Mautes A, Topper R, Oestreicher AB, Gispen WH, Nacimiento AC, et al. B-50 (GAP-43) in the spinal cord caudal to hemisection: indication for lack of intraspinal sprouting in dorsal root axons. J Neurosci Res. 1993;35(6):603–17.

    Article  CAS  PubMed  Google Scholar 

  19. Ashby P. Spasticity: Discussion I. In: Emre M, Benecke R, editors. The current status of research and treatment. Carnforth: Partheno; 1989. p. 68–9.

    Google Scholar 

  20. Burke D, Ashby P. Are spinal “presynaptic” inhibitory mechanisms suppressed in spasticity? J Neurol Sci. 1972;15(3):321–6.

    Article  CAS  PubMed  Google Scholar 

  21. Faist M, Mazevet D, Dietz V, Pierrot-Deseilligny E. A quantitative assessment of presynaptic inhibition of Ia afferents in spastics. Differences in hemiplegics and paraplegics. Brain. 1994;117(Pt 6):1449–55.

    Article  PubMed  Google Scholar 

  22. Remy-Neris O, Denys P, Daniel O, Barbeau H, Bussel B. Effect of intrathecal clonidine on group I and group II oligosynaptic excitation in paraplegics. Exp Brain Res. 2003;148(4):509–14.

    CAS  PubMed  Google Scholar 

  23. Ibrahim IK, Berger W, Trippel M, Dietz V. Stretch-induced electromyographic activity and torque in spastic elbow muscles. Differential modulation of reflex activity in passive and active motor tasks. Brain. 1993;116(Pt 4):971–89.

    Article  PubMed  Google Scholar 

  24. Thilmann AF, Fellows SJ, Garms E. Pathological stretch reflexes on the “good” side of hemiparetic patients. J Neurol Neurosurg Psychiatry. 1990;53(3):208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thilmann AF, Fellows SJ, Garms E. The mechanism of spastic muscle hypertonus. Variation in reflex gain over the time course of spasticity. Brain. 1991;114(Pt 1A):233–44.

    PubMed  Google Scholar 

  26. O’Dwyer NJ, Ada L, Neilson PD. Spasticity and muscle contracture following stroke. Brain. 1996;119(Pt 5):1737–49.

    Article  PubMed  Google Scholar 

  27. Berger W, Horstmann G, Dietz V. Tension development and muscle activation in the leg during gait in spastic hemiparesis: independence of muscle hypertonia and exaggerated stretch reflexes. J Neurol Neurosurg Psychiatry. 1984;47(9):1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dietz V, Berger W. Normal and impaired regulation of muscle stiffness in gait: a new hypothesis about muscle hypertonia. Exp Neurol. 1983;79(3):680–7.

    Article  CAS  PubMed  Google Scholar 

  29. Dietz V, Quintern J, Berger W. Electrophysiological studies of gait in spasticity and rigidity. Evidence that altered mechanical properties of muscle contribute to hypertonia. Brain. 1981;104(3):431–49.

    Article  CAS  PubMed  Google Scholar 

  30. Dietz V, Trippel M, Berger W. Reflex activity and muscle tone during elbow movements in patients with spastic paresis. Ann Neurol. 1991;30(6):767–79.

    Article  CAS  PubMed  Google Scholar 

  31. Powers RK, Campbell DL, Rymer WZ. Stretch reflex dynamics in spastic elbow flexor muscles. Ann Neurol. 1989;25(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  32. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33.

    Article  PubMed  Google Scholar 

  33. Jones CA, Yang JF. Reflex behavior during walking in incomplete spinal-cord-injured subjects. Exp Neurol. 1994;128(2):239–48.

    Article  CAS  PubMed  Google Scholar 

  34. Sinkjaer T, Andersen JB, Nielsen JF. Impaired stretch reflex and joint torque modulation during spastic gait in multiple sclerosis patients. J Neurol. 1996;243(8):566–74.

    Article  CAS  PubMed  Google Scholar 

  35. Sinkjaer T, Toft E, Larsen K, Andreassen S, Hansen HJ. Non-reflex and reflex mediated ankle joint stiffness in multiple sclerosis patients with spasticity. Muscle Nerve. 1993;16(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  36. Dietz V, Ketelsen UP, Berger W, Quintern J. Motor unit involvement in spastic paresis. Relationship between leg muscle activation and histochemistry. J Neurol Sci. 1986;75(1):89–103.

    Article  CAS  PubMed  Google Scholar 

  37. Rosenfalck A, Andreassen S. Impaired regulation of force and firing pattern of single motor units in patients with spasticity. J Neurol Neurosurg Psychiatry. 1980;43(10):907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee WA, Boughton A, Rymer WZ. Absence of stretch reflex gain enhancement in voluntarily activated spastic muscle. Exp Neurol. 1987;98(2):317–35.

    Article  CAS  PubMed  Google Scholar 

  39. Powers RK, Marder-Meyer J, Rymer WZ. Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann Neurol. 1988;23(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  40. Hufschmidt A, Mauritz KH. Chronic transformation of muscle in spasticity: a peripheral contribution to increased tone. J Neurol Neurosurg Psychiatry. 1985;48(7):676–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Edstrom L. Selective changes in the sizes of red and white muscle fibres in upper motor lesions and Parkinsonism. J Neurol Sci. 1970;11(6):537–50.

    Article  CAS  PubMed  Google Scholar 

  42. O’Dwyer NJ, Ada L. Reflex hyperexcitability and muscle contracture in relation to spastic hypertonia. Curr Opin Neurol. 1996;9(6):451–5.

    Article  PubMed  Google Scholar 

  43. Dietz V. Gait disorders. In: Barnes M, Good D, editors. Neurological rehabilitation, handbook of clinical neurology. Amsterdam: Elsevier; 2013. p. 133–43.

    Chapter  Google Scholar 

  44. Hirsch MA, Westhoff B, Toole T, Haupenthal S, Krauspe R, Hefter H. Association between botulinum toxin injection into the arm and changes in gait in adults after stroke. Mov Disord. 2005;20(8):1014–20.

    Article  PubMed  Google Scholar 

  45. Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2001;2(4):263–73.

    Article  CAS  PubMed  Google Scholar 

  46. Zorner B, Schwab ME. Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci. 2010;1198 Suppl 1:E22–34.

    Article  PubMed  Google Scholar 

  47. Beauparlant J, van den Brand R, Barraud Q, Friedli L, Musienko P, Dietz V, et al. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain. 2013;136(Pt 11):3347–61.

    Article  PubMed  Google Scholar 

  48. Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys Med Rehabil. 2012;93(9):1508–17.

    Article  PubMed  Google Scholar 

  49. Lovely RG, Gregor RJ, Roy RR, Edgerton VR. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp Neurol. 1986;92(2):421–35.

    Article  CAS  PubMed  Google Scholar 

  50. van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 2012;336(6085):1182–5.

    Article  PubMed  CAS  Google Scholar 

  51. Wernig A, Nanassy A, Muller S. Laufband (LB) therapy in spinal cord lesioned persons. Prog Brain Res. 2000;128:89–97.

    Article  CAS  PubMed  Google Scholar 

  52. De Leon RD, Hodgson JA, Roy RR, Edgerton VR. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol. 1998;80(1):83–91.

    PubMed  Google Scholar 

  53. Ditunno JF, Young W, Donovan WH, Creasey G. The international standards booklet for neurological and functional classification of spinal cord injury. Paraplegia. 1994;32(2):70–80.

    Article  PubMed  Google Scholar 

  54. Kirshblum S, Waring 3rd W. Updates for the international standards for neurological classification of spinal cord injury. Phys Med Rehabil Clin N Am. 2014;25(3):505–17. vii.

    Article  PubMed  Google Scholar 

  55. Marino RJ, Ditunno Jr JF, Donovan WH, Maynard Jr F. Neurologic recovery after traumatic spinal cord injury: data from the Model Spinal Cord Injury Systems. Arch Phys Med Rehabil. 1999;80(11):1391–6.

    Article  CAS  PubMed  Google Scholar 

  56. Spiess MR, Muller RM, Rupp R, Schuld C, Group E-SS, van Hedel HJ. Conversion in ASIA impairment scale during the first year after traumatic spinal cord injury. J Neurotrauma. 2009;26(11):2027–36.

    Article  PubMed  Google Scholar 

  57. van Middendorp JJ, Hosman AJ, Pouw MH, Group E-SS, Van de Meent H. ASIA impairment scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord. 2009;47(7):555–60.

    Article  PubMed  Google Scholar 

  58. Kirshblum S, Millis S, McKinley W, Tulsky D. Late neurologic recovery after traumatic spinal cord injury. Arch Phys Med Rehabil. 2004;85(11):1811–7.

    Article  PubMed  Google Scholar 

  59. Buehner JJ, Forrest GF, Schmidt-Read M, White S, Tansey K, Basso DM. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program. Arch Phys Med Rehabil. 2012;93(9):1530–40.

    Article  PubMed  Google Scholar 

  60. Catz A, Itzkovich M, Agranov E, Ring H, Tamir A. SCIM–spinal cord independence measure: a new disability scale for patients with spinal cord lesions. Spinal Cord. 1997;35(12):850–6.

    Article  CAS  PubMed  Google Scholar 

  61. Furlan JC, Noonan V, Singh A, Fehlings MG. Assessment of disability in patients with acute traumatic spinal cord injury: a systematic review of the literature. J Neurotrauma. 2011;28(8):1413–30.

    Article  PubMed  PubMed Central  Google Scholar 

  62. van Hedel HJ, Dietz V. Walking during daily life can be validly and responsively assessed in subjects with a spinal cord injury. Neurorehabil Neural Repair. 2009;23(2):117–24.

    Article  PubMed  Google Scholar 

  63. Curt A, Van Hedel HJ, Klaus D, Dietz V. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair. J Neurotrauma. 2008;25(6):677–85.

    Article  PubMed  Google Scholar 

  64. Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011;91(1):48–60.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.

    Article  PubMed  Google Scholar 

  66. Dobkin BH, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, et al. Methods for a randomized trial of weight-supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury. Neurorehabil Neural Repair. 2003;17(3):153–67.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Harkema SJ. Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Neuroscientist. 2001;7(5):455–68.

    Article  CAS  PubMed  Google Scholar 

  68. Wernig A, Muller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992;30(4):229–38.

    Article  CAS  PubMed  Google Scholar 

  69. Wernig A, Nanassy A, Muller S. Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: follow-up studies. Spinal Cord. 1998;36(11):744–9.

    Article  CAS  PubMed  Google Scholar 

  70. Musselman KE, Fouad K, Misiaszek JE, Yang JF. Training of walking skills overground and on the treadmill: case series on individuals with incomplete spinal cord injury. Phys Ther. 2009;89(6):601–11.

    Article  PubMed  Google Scholar 

  71. Yang JF, Musselman KE, Livingstone D, Brunton K, Hendricks G, Hill D, et al. Repetitive mass practice or focused precise practice for retraining walking after incomplete spinal cord injury? A pilot randomized clinical trial. Neurorehabil Neural Repair. 2014;28(4):314–24.

    Article  PubMed  Google Scholar 

  72. Alcobendas-Maestro M, Esclarin-Ruz A, Casado-Lopez RM, Munoz-Gonzalez A, Perez-Mateos G, Gonzalez-Valdizan E, et al. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Neurorehabil Neural Repair. 2012;26(9):1058–63.

    Article  PubMed  Google Scholar 

  73. Alexeeva N, Sames C, Jacobs PL, Hobday L, Distasio MM, Mitchell SA, et al. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med. 2011;34(4):362–79.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, et al. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66(4):484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013;94(11):2297–308.

    Article  PubMed  Google Scholar 

  76. Field-Fote EC. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Arch Phys Med Rehabil. 2001;82(6):818–24.

    Article  CAS  PubMed  Google Scholar 

  77. Postans NJ, Hasler JP, Granat MH, Maxwell DJ. Functional electric stimulation to augment partial weight-bearing supported treadmill training for patients with acute incomplete spinal cord injury: a pilot study. Arch Phys Med Rehabil. 2004;85(4):604–10.

    Article  PubMed  Google Scholar 

  78. Barsi GI, Popovic DB, Tarkka IM, Sinkjaer T, Grey MJ. Cortical excitability changes following grasping exercise augmented with electrical stimulation. Exp Brain Res. 2008;191(1):57–66.

    Article  PubMed  Google Scholar 

  79. McGie SC, Masani K, Popovic MR. Failure of spinal paired associative stimulation to induce neuroplasticity in the human corticospinal tract. J Spinal Cord Med. 2014;37(5):565–74.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Popovic MR, Kapadia N, Zivanovic V, Furlan JC, Craven BC, McGillivray C. Functional electrical stimulation therapy of voluntary grasping versus only conventional rehabilitation for patients with subacute incomplete tetraplegia: a randomized clinical trial. Neurorehabil Neural Repair. 2011;25(5):433–42.

    Article  PubMed  Google Scholar 

  81. Petersen JA, Spiess M, Curt A, Dietz V, Schubert M. Spinal cord injury: one-year evolution of motor-evoked potentials and recovery of leg motor function in 255 patients. Neurorehabil Neural Repair. 2012;26(8):939–48.

    Article  PubMed  Google Scholar 

  82. Spiess M, Schubert M, Kliesch U, Halder P. Evolution of tibial SSEP after traumatic spinal cord injury: baseline for clinical trials. Clin Neurophysiol. 2008;119(5):1051–61.

    Article  PubMed  Google Scholar 

  83. Calancie B, Alexeeva N, Broton JG, Suys S, Hall A, Klose KJ. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans. J Neurotrauma. 1999;16(1):49–67.

    Article  CAS  PubMed  Google Scholar 

  84. Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Physiol (Lond). 1999;81(1):129–39.

    CAS  Google Scholar 

  85. Tazoe T, Perez MA. Effects of repetitive transcranial magnetic stimulation on recovery of function after spinal cord injury. Arch Phys Med Rehabil. 2015;96(4 Suppl):S145–55.

    Article  PubMed  Google Scholar 

  86. Benito J, Kumru H, Murillo N, Costa U, Medina J, Tormos JM, et al. Motor and gait improvement in patients with incomplete spinal cord injury induced by high-frequency repetitive transcranial magnetic stimulation. Top Spinal Cord Inj Rehabil. 2012;18(2):106–12.

    Article  CAS  PubMed  Google Scholar 

  87. Quartarone A, Bagnato S, Rizzo V, Morgante F, Sant’angelo A, Battaglia F, et al. Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex. Exp Brain Res. 2005;161(1):114–24.

    Article  PubMed  Google Scholar 

  88. Kumru H, Murillo N, Samso JV, Valls-Sole J, Edwards D, Pelayo R, et al. Reduction of spasticity with repetitive transcranial magnetic stimulation in patients with spinal cord injury. Neurorehabil Neural Repair. 2010;24(5):435–41.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009;12(10):1333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gerasimenko YP, Ichiyama RM, Lavrov IA, Courtine G, Cai L, Zhong H, et al. Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J Neurophysiol. 2007;98(5):2525–36.

    Article  CAS  PubMed  Google Scholar 

  91. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137(Pt 5):1394–409.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781):1938–47.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology. 2014;82(2):104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Prabhakar NR, Kumar GK. Oxidative stress in the systemic and cellular responses to intermittent hypoxia. Biol Chem. 2004;385(3–4):217–21.

    CAS  PubMed  Google Scholar 

  95. Sajkov D, McEvoy RD. Obstructive sleep apnea and pulmonary hypertension. Prog Cardiovasc Dis. 2009;51(5):363–70.

    Article  PubMed  Google Scholar 

  96. van Hedel HJ, Wirz M, Curt A. Improving walking assessment in subjects with an incomplete spinal cord injury: responsiveness. Spinal Cord. 2006;44(6):352–6.

    Article  PubMed  Google Scholar 

  97. Field-Fote EC, Tepavac D. Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys Ther. 2002;82(7):707–15.

    PubMed  Google Scholar 

  98. Nooijen CF, Ter Hoeve N, Field-Fote EC. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach. J Neuroeng Rehabil. 2009;6:36.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ferguson AR, Irvine KA, Gensel JC, Nielson JL, Lin A, Ly J, et al. Derivation of multivariate syndromic outcome metrics for consistent testing across multiple models of cervical spinal cord injury in rats. PLoS One. 2013;8(3), e59712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lapointe R, Lajoie Y, Serresse O, Barbeau H. Functional community ambulation requirements in incomplete spinal cord injured subjects. Spinal Cord. 2001;39(6):327–35.

    Article  CAS  PubMed  Google Scholar 

  101. Robinett CS, Vondran MA. Functional ambulation velocity and distance requirements in rural and urban communities. A clinical report. Phys Ther. 1988;68(9):1371–3.

    CAS  PubMed  Google Scholar 

  102. Awai L, Curt A. Intralimb coordination as a sensitive indicator of motor-control impairment after spinal cord injury. Front Hum Neurosci. 2014;8:148.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Maier IC, Baumann K, Thallmair M, Weinmann O, Scholl J, Schwab ME. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci. 2008;28(38):9386–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Awai PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Awai, L., Dietz, V., Curt, A. (2016). Rehabilitation-Dependent Neural Plasticity After Spinal Cord Injury. In: Tuszynski, M. (eds) Translational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7654-3_23

Download citation

Publish with us

Policies and ethics