Skip to main content

Stem Cells for Multiple Sclerosis

  • Chapter
  • First Online:
Translational Neuroscience

Abstract

Multiple sclerosis (MS) is a common cause of progressive neurological disability, particularly affecting young adults, and no currently available therapies have any clinically meaningful impact in reversing, halting, or even slowing progression. Stem cell therapies have for several decades held out the prospect of addressing this major therapeutic challenge. Classical cell replacement approaches envisaged transplanting stem cells to replace lost oligodendrocytes and to remyelinate denuded axons in focal MS lesions. However, the prominent role of diffuse axonal damage in generating progressive disability limits the applicability of this strategy. A second disparate approach to stem cell therapy in MS is to use autologous hematopoietic stem cells, aiming to regenerate the subject’s dysfunctional immune system and halt inflammatory damage. Finally, what we have termed restorative cell therapy aims to exploit the multiple reparative and/or disease-modifying capacities of autologous mesenchymal or other cell populations, principally from the bone marrow, but potentially from alternative tissues (such as fat), to limit and reverse tissue damage in multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blakemore WF. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature. 1977;266(5597):68–9.

    Article  CAS  PubMed  Google Scholar 

  2. Duncan ID. Oligodendrocytes and stem cell transplantation: their potential in the treatment of leukoencephalopathies. J Inherit Metab Dis. 2005;28(3):357–68.

    Article  CAS  PubMed  Google Scholar 

  3. Stangel M, Hartung HP. Remyelinating strategies for the treatment of multiple sclerosis. Prog Neurobiol. 2002;68(5):361–76.

    Article  CAS  PubMed  Google Scholar 

  4. Lassmann H. Stem cell and progenitor cell transplantation in multiple sclerosis: the discrepancy between neurobiological attraction and clinical feasibility. J Neurol Sci. 2005;233(1–2):83–6. doi:10.1016/j.jns.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

  5. Paty DW, Arnold DL. The lesions of multiple sclerosis. N Engl J Med. 2002;346(3):199–200.

    Article  PubMed  Google Scholar 

  6. Jose AM. Multiple sclerosis: can Schwann cells wrap it up? Yale J Biol Med. 2002;75(2):113–6.

    PubMed  PubMed Central  Google Scholar 

  7. Scolding NJ. Strategies for repair and remyelination in demyelinating diseases. Curr Opin Neurol. 1997;10:193–200.

    Article  CAS  PubMed  Google Scholar 

  8. Perier O, Gregoire A. Electron microscopic features of multiple sclerosis lesions. Brain. 1965;88(5):937–52.

    Article  CAS  PubMed  Google Scholar 

  9. Albert M, Antel JP, Bruck W, Stadelmann C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 2007;17(2):129–38.

    Article  PubMed  Google Scholar 

  10. Patani R, Balaratnam M, Vora A, Reynolds R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol. 2007;33(3):277–87.

    Article  CAS  PubMed  Google Scholar 

  11. Maeda Y, Solanky M, Menonna J, Chapin J, Li W, Dowling P. Platelet-derived growth factor-alpha receptor-positive oligodendroglia are frequent in multiple sclerosis lesions. Ann Neurol. 2001;49(6):776–85.

    Article  CAS  PubMed  Google Scholar 

  12. Scolding NJ, Franklin RJM, Stevens S, Heldin CH, Compston DAS, Newcombe J. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain. 1998;121:2221–8.

    Article  PubMed  Google Scholar 

  13. Snethen H, Love S, Scolding N. Disease-responsive neural precursor cells are present in multiple sclerosis lesions. Regen Med. 2008;3(6):835–47.

    Article  CAS  PubMed  Google Scholar 

  14. Fancy SPJ, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH, Franklin RJM. Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Exp Neurol. 2010;225(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  15. Chard D, Miller D. Is multiple sclerosis a generalized disease of the central nervous system? An MRI perspective. Curr Opin Neurol. 2009;22(3):214–8.

    Article  PubMed  Google Scholar 

  16. Evangelou N, DeLuca GC, Owens T, Esiri MM. Pathological study of spinal cord atrophy in multiple sclerosis suggests limited role of local lesions. Brain. 2005;128(Pt 1):29–34.

    CAS  PubMed  Google Scholar 

  17. Hirst C, Ingram G, Pearson O, Pickersgill T, Scolding N, Robertson N. Contribution of relapses to disability in multiple sclerosis. J Neurol. 2008;255(2):280–7.

    Article  PubMed  Google Scholar 

  18. Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, Tesar PJ. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522:216–20. doi:10.1038/nature14335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Zhang YP, Pepinsky B, Huang G, Shields LB, Shields CB, Mi S. Inhibition of LINGO-1 promotes functional recovery after experimental spinal cord demyelination. Exp Neurol. 2015;266:68–73. doi:10.1016/j.expneurol.2015.02.006.

    Article  CAS  PubMed  Google Scholar 

  20. Tran JQ, Rana J, Barkhof F, Melamed I, Gevorkyan H, Wattjes MP, Cadavid D. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm. 2014;1(2), e18. doi:10.1212/NXI.0000000000000018.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Atkins HL, Freedman MS. Hematopoietic stem cell therapy for multiple sclerosis: top 10 lessons learned. Neurotherapeutics. 2013;10(1):68–76. doi:10.1007/s13311-012-0162-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Atkins H. Hematopoietic SCT for the treatment of multiple sclerosis. Bone Marrow Transplant. 2010;45(12):1671–81. doi:10.1038/bmt.2010.168.

    Article  CAS  PubMed  Google Scholar 

  23. Hauser SL. Hematopoietic stem cell transplantation for MS: extraordinary evidence still needed. JAMA. 2015;313(3):251–2. doi:10.1001/jama.2014.18150.

    Article  PubMed  Google Scholar 

  24. Karussis DM, Vourka-Karussis U, Lehmann D, Ovadia H, Mizrachi-Koll R, Ben-Nun A, Slavin S. Prevention and reversal of adoptively transferred, chronic relapsing experimental autoimmune encephalomyelitis with a single high dose cytoreductive treatment followed by syngeneic bone marrow transplantation. J Clin Invest. 1993;92(2):765–72. doi:10.1172/JCI116648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fassas A, Anagnostopoulos A, Kazis A, Kapinas K, Sakellari I, Kimiskidis V, Tsompanakou A. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant. 1997;20(8):631–8. doi:10.1038/sj.bmt.1700944.

    Article  CAS  PubMed  Google Scholar 

  26. Saccardi R, Kozak T, Bocelli-Tyndall C, Fassas A, Kazis A, Havrdova E, Autoimmune Diseases Working Party of EBMT. Autologous stem cell transplantation for progressive multiple sclerosis: update of the European group for blood and marrow transplantation autoimmune diseases working party database. Mult Scler. 2006;12(6):814–23.

    Article  CAS  PubMed  Google Scholar 

  27. Mancardi G, Saccardi R. Autologous haematopoietic stem-cell transplantation in multiple sclerosis. Lancet Neurol. 2008;7(7):626–36. doi:10.1016/S1474-4422(08)70138-8.

    Article  PubMed  Google Scholar 

  28. Burt RK, Cohen BA, Russell E, Spero K, Joshi A, Oyama Y, Burns WH. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood. 2003;102(7):2373–8. doi:10.1182/blood-2003-03-0877.

    Article  CAS  PubMed  Google Scholar 

  29. Ni XS, Ouyang J, Zhu WH, Wang C, Chen B. Autologous hematopoietic stem cell transplantation for progressive multiple sclerosis: report of efficacy and safety at three yr of follow up in 21 patients. Clin Transplant. 2006;20(4):485–9. doi:10.1111/j.1399-0012.2006.00510.x.

    Article  PubMed  Google Scholar 

  30. Su L, Xu J, Ji BX, Wan SG, Lu CY, Dong HQ, Lu DP. Autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Int J Hematol. 2006;84(3):276–81. doi:10.1532/IJH97.A10516.

    Article  PubMed  Google Scholar 

  31. Xu J, Ji BX, Su L, Dong HQ, Sun XJ, Liu CY. Clinical outcomes after autologous haematopoietic stem cell transplantation in patients with progressive multiple sclerosis. Chin Med J (Engl). 2006;119(22):1851–5.

    Google Scholar 

  32. Krasulová E, Trneny M, Kozák T, Vacková B, Pohlreich D, Kemlink D, Havrdová E. High-dose immunoablation with autologous haematopoietic stem cell transplantation in aggressive multiple sclerosis: a single centre 10-year experience. Mult Scler. 2010;16(6):685–93. doi:10.1177/1352458510364538.

    Article  PubMed  Google Scholar 

  33. Mancardi GL, Sormani MP, Di Gioia M, Vuolo L, Gualandi F, Amato MP, Italian BMT Study Group. Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scler. 2012;18(6):835–42. doi:10.1177/1352458511429320.

    Article  CAS  PubMed  Google Scholar 

  34. Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G, Burns WH. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 2009;8(3):244–53.

    Article  CAS  PubMed  Google Scholar 

  35. Fagius J, Lundgren J, Oberg G. Early highly aggressive MS successfully treated by hematopoietic stem cell transplantation. Mult Scler. 2009;15(2):229–37. doi:10.1177/1352458508096875.

    Article  CAS  PubMed  Google Scholar 

  36. Kimiskidis V, Sakellari I, Tsimourtou V, Kapina V, Papagiannopoulos S, Kazis D, Fassas A. Autologous stem-cell transplantation in malignant multiple sclerosis: a case with a favorable long-term outcome. Mult Scler. 2008;14(2):278–83. doi:10.1177/1352458507082604.

    Article  CAS  PubMed  Google Scholar 

  37. Mancardi GL, Murialdo A, Rossi P, Gualandi F, Martino G, Marmont A, Uccelli A. Autologous stem cell transplantation as rescue therapy in malignant forms of multiple sclerosis. Mult Scler. 2005;11(3):367–71.

    Article  PubMed  Google Scholar 

  38. Openshaw H, Lund BT, Kashyap A, Atkinson R, Sniecinski I, Weiner LP, Forman S. Peripheral blood stem cell transplantation in multiple sclerosis with busulfan and cyclophosphamide conditioning: report of toxicity and immunological monitoring. Biol Blood Marrow Transplant. 2000;6(5A):563–75.

    Article  CAS  PubMed  Google Scholar 

  39. Burt RK, Balabanov R, Han X, Sharrack B, Morgan A, Quigley K, Burman J. Association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability in patients with relapsing-remitting multiple sclerosis. JAMA. 2015;313(3):275–84. doi:10.1001/jama.2014.17986.

    Article  PubMed  Google Scholar 

  40. Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, Marrow Transplantation E. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84(10):981–8. doi:10.1212/WNL.0000000000001329.

    Article  CAS  PubMed  Google Scholar 

  41. Saccardi R, Freedman MS, Sormani MP, Atkins H, Farge D, Griffith LM, HSCT in MS International Study Group. A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: a position paper. Mult Scler. 2012;18(6):825–34. doi:10.1177/1352458512438454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Korbling M, Estrov Z. Adult stem cells for tissue repair. N Engl J Med. 2003;349:570–82.

    Article  PubMed  Google Scholar 

  43. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martino G. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature. 2005;436(7048):266–71.

    Article  CAS  PubMed  Google Scholar 

  44. Rice CM, Kemp K, Wilkins A, Scolding NJ. Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases. Lancet. 2013;382(9899):1204–13. doi:10.1016/S0140-6736(13)61810-3.

    Article  CAS  PubMed  Google Scholar 

  45. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.

    Article  CAS  PubMed  Google Scholar 

  46. Phinney DG. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem. 2012;113(9):2806–12. doi:10.1002/jcb.24166.

    Article  CAS  PubMed  Google Scholar 

  47. da Silva ML, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(Pt 11):2204–13.

    Google Scholar 

  48. Rice CM, Scolding NJ. Adult stem cells—reprogramming neurological repair? Lancet. 2004;364(9429):193–9.

    Article  CAS  PubMed  Google Scholar 

  49. Akiyama Y, Radtke C, Honmou O, Kocsis JD. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia. 2002;39(3):229–36.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sasaki M, Honmou O, Akiyama Y, Uede T, Hashi K, Kocsis JD. Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia. 2001;35(1):26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Devine SM, Cobbs C, Jennings M, Batholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into non-human primates. Blood. 2003;101:2999–3001.

    Article  CAS  PubMed  Google Scholar 

  52. Gordon D, Pavlovska G, Uney JB, Wraith DC, Scolding NJ. Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol. 2010;69(11):1087–95.

    Article  PubMed  Google Scholar 

  53. Rice CM, Scolding N. Adult human mesenchymal cells proliferate and migrate in response to chemokines expressed in demyelination. Cell Adhes Migr. 2010;4:235–40.

    Article  Google Scholar 

  54. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A. 2005;102(50):18171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia. 2009;57:1192–203.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pisati F, Bossolasco P, Meregalli M, Cova L, Belicchi M, Gavina M, Polli E. Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transplant. 2007;16(1):41–55.

    Article  PubMed  Google Scholar 

  57. Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, Chopp M. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia. 2005;49(3):407–17.

    Article  PubMed  Google Scholar 

  58. Bronckaers A, Hilkens P, Martens W, Gervois P, Ratajczak J, Struys T, Lambrichts I. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacol Ther. 2014;143(2):181–96. doi:10.1016/j.pharmthera.2014.02.013.

    Article  CAS  PubMed  Google Scholar 

  59. Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20(1):14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang D, Zhang H, Liang J, Li X, Feng X, Wang H, Sun L. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years experience. Cell Transplant. 2012;22:2267–2277.

    Google Scholar 

  61. Freedman MS, Bar-Or A, Atkins HL, Karussis D, Frassoni F, Lazarus H, Uccelli A. The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the international MSCT study group. Mult Scler. 2010;16:503–10.

    Article  PubMed  Google Scholar 

  62. Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–93. doi:10.1016/S1474-4422(14)70256-X.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang J, Li Y, Lu M, Cui Y, Chen J, Noffsinger L, Chopp M. Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J Neurosci Res. 2006;84(3):587–95.

    Article  CAS  PubMed  Google Scholar 

  64. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11.

    Article  CAS  PubMed  Google Scholar 

  65. Kemp K, Hares K, Mallam E, Heesom KJ, Scolding N, Wilkins A. Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. J Neurochem. 2009;114:1569–80.

    Article  Google Scholar 

  66. Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis. 2010;2011:164608.

    PubMed  PubMed Central  Google Scholar 

  67. Shen LH, Xin H, Li Y, Zhang RL, Cui Y, Zhang L, Chopp M. Endogenous tissue plasminogen activator mediates bone marrow stromal cell-induced neurite remodeling after stroke in mice. Stroke. 2011;42(2):459–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Farinazzo A, Turano E, Marconi S, Bistaffa E, Bazzoli E, Bonetti B. Murine adipose-derived mesenchymal stromal cell vesicles: in vitro clues for neuroprotective and neuroregenerative approaches. Cytotherapy. 2015;17(5):571–8. doi:10.1016/j.jcyt.2015.01.005.

    Article  CAS  PubMed  Google Scholar 

  69. Johansson CB, Youssef S, Koleckar K, Holbrook C, Doyonnas R, Corbel SY, Blau HM. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol. 2008;10(5):575–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kemp K, Gordon D, Wraith DC, Mallam E, Hartfield E, Uney J, Scolding N. Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells. Neuropathol Appl Neurobiol. 2010;37:166–78.

    Article  Google Scholar 

  71. Kemp K, Wilkins A, Scolding N. Cell fusion in the brain: two cells forward, one cell back. Acta Neuropathol. 2014;128:629–38. doi:10.1007/s00401-014-1303-1.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Prockop DJ. Mitochondria to the rescue. Nat Med. 2012;18(5):653–4.

    Article  CAS  PubMed  Google Scholar 

  73. Kemp K, Gray E, Wilkins A, Scolding N. Purkinje cell fusion and binucleate heterokaryon formation in multiple sclerosis cerebellum. Brain. 2012;135(Pt 10):2962–72.

    Article  PubMed  Google Scholar 

  74. Cogle CR, Yachnis AT, Laywell ED, Zander DS, Wingard JR, Steindler DA, Scott EW. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet. 2004;363(9419):1432–7.

    Article  CAS  PubMed  Google Scholar 

  75. Lee PH, Lee JE, Kim HS, Song SK, Lee HS, Nam HS, Sohn YH. A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol. 2012;72(1):32–40.

    Article  PubMed  Google Scholar 

  76. Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, Gheini MR. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7(6):407–14.

    Article  CAS  PubMed  Google Scholar 

  77. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, Chandran S. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 2012;11(2):150–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Slavin S. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–94.

    PubMed  PubMed Central  Google Scholar 

  79. Rice CM, Mallam EA, Whone AL, Walsh P, Brooks DJ, Kane N, Scolding NJ. Safety and feasibility of autologous bone marrow cellular therapy in relapsing-progressive multiple sclerosis. Clin Pharmacol Ther. 2010;87(6):679–85.

    Article  CAS  PubMed  Google Scholar 

  80. Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Kutoubi A, Kreidieh NM. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010;227:185–9.

    Article  CAS  PubMed  Google Scholar 

  81. Rice CM, Marks DI, Ben-Shlomo Y, Evangelou N, Morgan PS, Metcalfe C, Walsh P, Kane NM, Guttridge MG, Miflin G, Blackmore S, Sarkar P, Redondo J, Owen D, Cottrell DA, Wilkins A, Scolding NJ. Assessment of bone marrow-derived cellular therapy in progressive multiple sclerosis (ACTiMuS): study protocol for a randomised controlled trial. Trials. 2015 Oct 14;16:463. doi:10.1186/s13063-015-0953-1.

  82. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45, e54. doi:10.1038/emm.2013.94.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Salewski RP, Mitchell RA, Li L, Shen C, Milekovskaia M, Nagy A, Fehlings MG. Transplantation of induced pluripotent stem cell-derived neural stem cells mediate functional recovery following thoracic spinal cord injury through remyelination of axons. Stem Cells Transl Med. 2015;4:743–54. doi:10.5966/sctm.2014-0236.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Scolding PhD, FRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarkar, P., Scolding, N. (2016). Stem Cells for Multiple Sclerosis. In: Tuszynski, M. (eds) Translational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7654-3_14

Download citation

Publish with us

Policies and ethics