Skip to main content

Translating Gene Therapy for Pain from Animal Studies to the Clinic

  • Chapter
  • First Online:
Translational Neuroscience

Abstract

The use of gene transfer techniques, designed to effect the continuous release of analgesic peptides, offers the possibility to treat what may otherwise be intractable pain. In this chapter, we review the biology underlying this approach, the results of preclinical experiments in animal models, the human trials that have been completed, and prospects for the near-term future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antunes Bras JM, Epstein AL, Bourgoin S, et al. Herpes simplex virus 1-mediated transfer of preproenkephalin A in rat dorsal root ganglia. J Neurochem. 1998;70:1299–303.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson SP, Yeomans DC, Bender MA, et al. Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes virus. Proc Natl Acad Sci U S A. 1999;96:3211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Finegold AA, Mannes AJ, Iadarola MJ. A paracrine paradigm for in vivo gene therapy in the central nervous system: treatment of chronic pain. Hum Gene Ther. 1999;10:1251–7.

    Article  CAS  PubMed  Google Scholar 

  4. Molet J, Pohl M. Gene-based approaches in pain research and exploration of new therapeutic targets and strategies. Eur J Pharmacol. 2013;716:129–41.

    Article  CAS  PubMed  Google Scholar 

  5. Goss JR, Mata M, Goins WF, et al. Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Ther. 2001;8:551–6.

    Article  CAS  PubMed  Google Scholar 

  6. Braz J, Beaufour C, Coutaux A, et al. Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J Neurosci Off J Soc Neurosci. 2001;21:7881–8.

    CAS  Google Scholar 

  7. Goss JR, Harley CF, Mata M, et al. Herpes vector-mediated expression of proenkephalin reduces pain-related behavior in a model of bone cancer pain. Ann Neurol. 2002;52:662–5.

    Article  CAS  PubMed  Google Scholar 

  8. Hao S, Mata M, Goins W, et al. Transgene-mediated enkephalin release enhances the effect of morphine and evades tolerance to produce a sustained antiallodynic effect. Pain. 2003;102:135–42.

    Article  CAS  PubMed  Google Scholar 

  9. Yeomans DC, Jones T, Laurito CE, et al. Reversal of ongoing thermal hyperalgesia in mice by a recombinant herpesvirus that encodes human preproenkephalin. Mol Ther. 2004;9:24–9.

    Article  CAS  PubMed  Google Scholar 

  10. Meunier A, Latremoliere A, Mauborgne A, et al. Attenuation of pain-related behavior in a rat model of trigeminal neuropathic pain by viral-driven enkephalin overproduction in trigeminal ganglion neurons. Mol Ther. 2005;11:608–16.

    Article  CAS  PubMed  Google Scholar 

  11. Lu Y, McNearney TA, Lin W, et al. Treatment of inflamed pancreas with enkephalin encoding HSV-1 recombinant vector reduces inflammatory damage and behavioral sequelae. Mol Ther. 2007;15:1812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang H, McNearney TA, Chu R, et al. Enkephalin-encoding herpes simplex virus-1 decreases inflammation and hotplate sensitivity in a chronic pancreatitis model. Mol Pain. 2008;4:8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu Y, McNearney TA, Wilson SP, et al. Joint capsule treatment with enkephalin-encoding HSV-1 recombinant vector reduces inflammatory damage and behavioural sequelae in rat CFA monoarthritis. Eur J Neurosci. 2008;27:1153–65.

    Article  PubMed  Google Scholar 

  14. Wang Y, Nowicki MO, Wang X, et al. Comparative effectiveness of antinociceptive gene therapies in animal models of diabetic neuropathic pain. Gene Ther. 2013;20:742–50.

    Article  CAS  PubMed  Google Scholar 

  15. Yokoyama H, Oguchi T, Goins WF, et al. Effects of herpes simplex virus vector-mediated enkephalin gene therapy on bladder overactivity and nociception. Hum Gene Ther. 2013;24:170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yeomans DC, Lu Y, Laurito CE, et al. Recombinant herpes vector-mediated analgesia in a primate model of hyperalgesia. Mol Ther. 2006;13:589–97.

    Article  CAS  PubMed  Google Scholar 

  17. Hao S, Mata M, Wolfe D, et al. Gene transfer of glutamic acid decarboxylase reduces neuropathic pain. Ann Neurol. 2005;57:914–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chattopadhyay M, Mata M, Fink DJ. Vector-mediated release of GABA attenuates pain-related behaviors and reduces Na(V)1.7 in DRG neurons. Eur J Pain. 2011;15:913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu J, Wolfe D, Hao S, et al. Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain. Mol Ther. 2004;10:57–66.

    Article  CAS  PubMed  Google Scholar 

  20. Miyazato M, Sugaya K, Goins WF, et al. Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord-injured rats. Gene Ther. 2009;16:660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Tai C, de Groat WC, et al. Release of GABA from sensory neurons transduced with a GAD67-expressing vector occurs by non-vesicular mechanisms. Brain Res. 2006;1073–1074:297–304.

    Article  PubMed  Google Scholar 

  22. Hao S, Mata M, Wolfe D, et al. HSV-mediated gene transfer of the glial cell derived neurotrophic factor (GDNF) provides an anti-allodynic effect in neuropathic pain. Mol Ther. 2003;8:367–75.

    Article  CAS  PubMed  Google Scholar 

  23. Hao S, Mata M, Glorioso JC, Fink DJ. HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol Pain. 2006;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Oguchi T, Funahashi Y, Yokoyama H, et al. Effect of herpes simplex virus vector-mediated interleukin-4 gene therapy on bladder overactivity and nociception. Gene Ther. 2013;20:194–200.

    Article  CAS  PubMed  Google Scholar 

  25. Hao S, Mata M, Glorioso JC, Fink DJ. Gene transfer to interfere with TNFalpha signaling in neuropathic pain. Gene Ther. 2007;14:1010–6.

    Article  CAS  PubMed  Google Scholar 

  26. Huang W, Zheng W, Ouyang H, et al. Mechanical allodynia induced by nucleoside reverse transcriptase inhibitor is suppressed by p55TNFSR mediated by herpes simplex virus vector through the SDF1 alpha/CXCR4 system in rats. Anesth Analg. 2014;118:671–80.

    Article  CAS  PubMed  Google Scholar 

  27. Huang W, Zheng W, Liu S, et al. HSV-mediated p55TNFSR reduces neuropathic pain induced by HIV gp120 in rats through CXCR4 activity. Gene Ther. 2014;21:328–36.

    Article  CAS  PubMed  Google Scholar 

  28. Funahashi Y, Oguchi T, Goins WF, et al. Herpes simplex virus vector mediated gene therapy of tumor necrosis factor-alpha blockade for bladder overactivity and nociception in rats. J Urol. 2013;189:366–73.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Z, Peng X, Hao S, et al. HSV-mediated transfer of interleukin-10 reduces inflammatory pain through modulation of membrane tumor necrosis factor alpha in spinal cord microglia. Gene Ther. 2008;15:183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lau D, Harte SE, Morrow TJ, et al. Herpes simplex virus vector-mediated expression of interleukin-10 reduces below-level central neuropathic pain after spinal cord injury. Neurorehabil Neural Repair. 2012;26:889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wolfe D, Hao S, Hu J, et al. Engineering an endomorphin-2 gene for use in neuropathic pain therapy. Pain. 2007;133:29–38.

    Article  PubMed  Google Scholar 

  32. Hao S, Wolfe D, Glorioso JC, et al. Effects of transgene-mediated endomorphin-2 in inflammatory pain. Eur J Pain. 2009;13:380–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yeomans DC, Levinson SR, Peters MC, et al. Decrease in inflammatory hyperalgesia by herpes vector-mediated knockdown of Nav1.7 sodium channels in primary afferents. Hum Gene Ther. 2005;16:271–7.

    Article  CAS  PubMed  Google Scholar 

  34. Chattopadhyay M, Zhou Z, Hao S, et al. Reduction of voltage gated sodium channel protein in DRG by vector mediated miRNA reduces pain in rats with painful diabetic neuropathy. Mol Pain. 2012;8:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goss JR, Cascio M, Goins WF, et al. HSV delivery of a ligand-regulated endogenous ion channel gene to sensory neurons results in pain control following channel activation. Mol Ther. 2011;19:500–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yao MZ, Gu JF, Wang JH, et al. Adenovirus-mediated interleukin-2 gene therapy of nociception. Gene Ther. 2003;10:1392–9.

    Article  CAS  PubMed  Google Scholar 

  37. Maeda S, Kawamoto A, Yatani Y, et al. Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats. Mol Pain. 2008;4:65.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fischer G, Pan B, Vilceanu D, et al. Sustained relief of neuropathic pain by AAV-targeted expression of CBD3 peptide in rat dorsal root ganglion. Gene Ther. 2014;21:44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Samad OA, Tan AM, Cheng X, et al. Virus-mediated shRNA knockdown of Na(v)1.3 in rat dorsal root ganglion attenuates nerve injury-induced neuropathic pain. Mol Ther. 2013;21:49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu F, Xu X, Miao X, et al. Effect of recombinant adenovirus coding for endomorphin-2 on neuropathic pain in rats. Int J Clin Exp Pathol. 2012;5:914–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Eaton MJ, Blits B, Ruitenberg MJ, et al. Amelioration of chronic neuropathic pain after partial nerve injury by adeno-associated viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord. Gene Ther. 2002;9:1387–95.

    Article  CAS  PubMed  Google Scholar 

  42. Milligan ED, Sloane EM, Langer SJ, et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain. 2005;1:9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Storek B, Reinhardt M, Wang C, et al. Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc Natl Acad Sci U S A. 2008;105:1055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zou W, Song Z, Guo Q, et al. Intrathecal lentiviral-mediated RNA interference targeting PKCgamma attenuates chronic constriction injury-induced neuropathic pain in rats. Hum Gene Ther. 2011;22:465–75.

    Article  CAS  PubMed  Google Scholar 

  45. Ledeboer A, Jekich BM, Sloane EM, et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun. 2007;21:686–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sloane E, Ledeboer A, Seibert W, et al. Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental Multiple Sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav Immun. 2009;23:92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Milligan ED, Sloane EM, Langer SJ, et al. Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain. Pain. 2006;126:294–308.

    Article  CAS  PubMed  Google Scholar 

  48. Milligan ED, Soderquist RG, Malone SM, et al. Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biol. 2006;2:293–308.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jacques SJ, Ahmed Z, Forbes A, et al. AAV8(gfp) preferentially targets large diameter dorsal root ganglion neurones after both intra-dorsal root ganglion and intrathecal injection. Mol Cell Neurosci. 2012;49:464–74.

    Article  CAS  PubMed  Google Scholar 

  50. Mason MR, Ehlert EM, Eggers R, et al. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol Ther. 2010;18:715–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tzabazis AZ, Klukinov M, Feliciano DP, et al. Gene therapy for trigeminal pain in mice. Gene Ther. 2014;21:422–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim J, Kim SJ, Lee H, Chang JW. Effective neuropathic pain relief through sciatic nerve administration of GAD65-expressing rAAV2. Biochem Biophys Res Commun. 2009;388:73–8.

    Article  CAS  PubMed  Google Scholar 

  53. Xu Y, Gu Y, Xu GY, et al. Adeno-associated viral transfer of opioid receptor gene to primary sensory neurons: a strategy to increase opioid antinociception. Proc Natl Acad Sci U S A. 2003;100:6204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iyer SM, Montgomery KL, Towne C, et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol. 2014.

    Google Scholar 

  55. Jasmin L, Rabkin SD, Granato A, et al. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature. 2003;424:316–20.

    Article  CAS  PubMed  Google Scholar 

  56. Meunier A, Latremoliere A, Dominguez E, et al. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat. Mol Ther. 2007;15:687–97.

    CAS  PubMed  Google Scholar 

  57. Kyrkanides S, Fiorentino PM, Miller JN, et al. Amelioration of pain and histopathologic joint abnormalities in the Col1-IL-1beta(XAT) mouse model of arthritis by intraarticular induction of mu-opioid receptor into the temporomandibular joint. Arthritis Rheum. 2007;56:2038–48.

    Article  CAS  PubMed  Google Scholar 

  58. Fink DJ, Wechuck J, Mata M, et al. Gene therapy for pain: results of a phase I clinical trial. Ann Neurol. 2011;70:207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baba H, Ji RR, Kohno T, et al. Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci. 2003;24:818–30.

    Article  CAS  PubMed  Google Scholar 

  60. Scholz J, Broom DC, Youn DH, et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci Off J Soc Neurosci. 2005;25:7317–23.

    Article  CAS  Google Scholar 

  61. Puskovic V, Wolfe D, Goss J, et al. Prolonged biologically active transgene expression driven by HSV LAP2 in brain in vivo. Mol Ther. 2004;10:67–75.

    Article  CAS  PubMed  Google Scholar 

  62. Chattopadhyay M, Mata M, Goss J, et al. Prolonged preservation of nerve function in diabetic neuropathy in mice by herpes simplex virus-mediated gene transfer. Diabetologia. 2007;50:1550–8.

    Article  CAS  PubMed  Google Scholar 

  63. Wu Z, Mata M, Fink DJ. Prolonged regulatable expression of EPO from an HSV vector using the LAP2 promoter element. Gene Ther. 2012;19:1107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chattopadhyay M, Wolfe D, Huang S, et al. In vivo gene therapy for pyridoxine-induced neuropathy by herpes simplex virus-mediated gene transfer of neurotrophin-3. Ann Neurol. 2002;51:19–27.

    Article  CAS  PubMed  Google Scholar 

  65. Chattopadhyay M, Goss J, Wolfe D, et al. Protective effect of herpes simplex virus-mediated neurotrophin gene transfer in cisplatin neuropathy. Brain J Neurol. 2004;127:929–39.

    Article  Google Scholar 

  66. Chattopadhyay M, Wolfe D, Mata M, et al. Long-term neuroprotection achieved with latency-associated promoter-driven herpes simplex virus gene transfer to the peripheral nervous system. Mol Ther. 2005;12:307–13.

    Article  CAS  PubMed  Google Scholar 

  67. Quessy SN, Rowbotham MC. Placebo response in neuropathic pain trials. Pain. 2008;138:479–83.

    Article  PubMed  Google Scholar 

  68. Hauser W, Sarzi-Puttini P, Tolle TR, Wolfe F. Placebo and nocebo responses in randomised controlled trials of drugs applying for approval for fibromyalgia syndrome treatment: systematic review and meta-analysis. Clin Exp Rheumatol. 2012;30:78–87.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Darren Wolfe PhD or David J. Fink MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wolfe, D., Krisky, D., Goss, J., Wechuck, J., Mata, M., Fink, D.J. (2016). Translating Gene Therapy for Pain from Animal Studies to the Clinic. In: Tuszynski, M. (eds) Translational Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7654-3_10

Download citation

Publish with us

Policies and ethics