Context-Aware Recommender Systems

Abstract

The importance of contextual information has been recognized by researchers and practitioners in many disciplines, including e-commerce personalization, information retrieval, ubiquitous and mobile computing, data mining, marketing, and management. While a substantial amount of research has already been performed in the area of recommender systems, many existing approaches focus on recommending the most relevant items to users without taking into account any additional contextual information, such as time, location, or the company of other people (e.g., for watching movies or dining out). There is growing understanding that relevant contextual information does matter in recommender systems and that it is important to take this information into account when providing recommendations. We discuss the general notion of context and how it can be modeled in recommender systems. We also discuss three popular algorithmic paradigms—contextual pre-filtering, post-filtering, and modeling—for incorporating contextual information into the recommendation process, and survey recent work on context-aware recommender systems. We also discuss important directions for future research.

References

  1. 1.
    AWS re:Invent 2012, Day 1 Keynote. http://www.youtube.com/watch?v=8FJ5DBLSFe4. YouTube video; Accessed: 2014-06-28
  2. 2.
    Abbar, S., Bouzeghoub, M., Lopez, S.: Context-aware recommender systems: A service-oriented approach. VLDB PersDB Workshop (2009)Google Scholar
  3. 3.
    Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide: A mobile context-aware tour guide. Wireless Networks 3(5), 421–433 (1997)CrossRefGoogle Scholar
  4. 4.
    Adomavicius, G., Jannach, D.: Preface to the special issue on context-aware recommender systems. User Model. User-Adapt. Interact. 24(1–2), 1–5 (2014)CrossRefGoogle Scholar
  5. 5.
    Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Magazine 32(3), 67–80 (2011)Google Scholar
  6. 6.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems (TOIS) 23(1), 103–145 (2005)CrossRefGoogle Scholar
  7. 7.
    Adomavicius, G., Tuzhilin, A.: Multidimensional recommender systems: A data warehousing approach. In: L. Fiege, G. Mhl, U. Wilhelm (eds.) Electronic Commerce, Lecture Notes in Computer Science, vol. 2232, pp. 180–192. Springer Berlin Heidelberg (2001). DOI 10.1007/3-540-45598-1_17. URL http://dx.doi.org/10.1007/3-540-45598-1_17
  8. 8.
    Adomavicius, G., Tuzhilin, A.: Incorporating context into recommender systems using multidimensional rating estimation methods. In: Proceedings of the 1st International Workshop on Web Personalization, Recommender Systems and Intelligent User Interfaces (WPRSIUI 2005) (2005)Google Scholar
  9. 9.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  10. 10.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci et al. [79], pp. 217–253Google Scholar
  11. 11.
    Adomavicius, G., Tuzhilin, A., Zheng, R.: REQUEST: A query language for customizing recommendations. Information System Research 23(1), 99–117 (2011)CrossRefGoogle Scholar
  12. 12.
    Ahn, H., Kim, K., Han, I.: Mobile advertisement recommender system using collaborative filtering: MAR-CF. In: Proceedings of the 2006 Conference of the Korea Society of Management Information Systems,Google Scholar
  13. 13.
    Alpaydin, E.: Introduction to machine learning. The MIT Press (2004)Google Scholar
  14. 14.
    Anand, S.S., Mobasher, B.: Contextual recommendation. WebMine, LNAI 4737, 142–160 (2007)Google Scholar
  15. 15.
    Ansari, A., Essegaier, S., Kohli, R.: Internet recommendation systems. Journal of Marketing Research 37(3), 363–375 (2000)CrossRefGoogle Scholar
  16. 16.
    Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: Intrigue: personalized recommendation of tourist attractions for desktop and hand held devices. Applied Artificial Intelligence 17(8), 687–714 (2003)CrossRefGoogle Scholar
  17. 17.
    Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. In: Workshop on Context-Aware Recommender Systems (CARS 2009). New York (2009)Google Scholar
  18. 18.
    Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., Lke, K.H., Schwaiger, R.: Incarmusic: Context-aware music recommendations in a car. In: C. Huemer, T. Setzer (eds.) E-Commerce and Web Technologies, Lecture Notes in Business Information Processing, vol. 85, pp. 89–100. Springer Berlin Heidelberg (2011). DOI 10.1007/978-3-642-23014-1_8. URL http://dx.doi.org/10.1007/978-3-642-23014-1_8
  19. 19.
    Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context-aware places of interest recommendations for mobile users. In: A. Marcus (ed.) Design, User Experience, and Usability. Theory, Methods, Tools and Practice, Lecture Notes in Computer Science, vol. 6769, pp. 531–540. Springer Berlin Heidelberg (2011). DOI 10.1007/978-3-642-21675-6_61. URL http://dx.doi.org/10.1007/978-3-642-21675-6_61
  20. 20.
    Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in mobile recommender systems. Personal and Ubiquitous Computing 16(5), 507–526 (2012)CrossRefGoogle Scholar
  21. 21.
    Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context aware recommendation. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pp. 301–304. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043988. URL http://doi.acm.org/10.1145/2043932.2043988
  22. 22.
    Baltrunas, L., Ricci, F.: Context-dependent items generation in collaborative filtering. In: Workshop on Context-Aware Recommender Systems (CARS 2009). New York (2009)Google Scholar
  23. 23.
    Baltrunas, L., Ricci, F.: Experimental evaluation of context-dependent collaborative filtering using item splitting. User Modeling and User-Adapted Interaction 24(1–2), 7–34 (2014). DOI 10.1007/s11257-012-9137-9. URL http://dx.doi.org/10.1007/s11257-012-9137-9
  24. 24.
    Bauman, K., Tuzhilin, A.: Discovering contextual information from user reviews for recommendation purposes. In: Proceedings of the ACM RecSys Workshop on New Trends in Content Based Recommender Systems (2014)Google Scholar
  25. 25.
    Bazire, M., Brézillon, P.: Understanding context before using it. In: A. Dey, et al. (eds.) Proceedings of the 5th International Conference on Modeling and Using Context. Springer-Verlag (2005)Google Scholar
  26. 26.
    Braunhofer, M., Elahi, M., Ge, M., Ricci, F.: Context dependent preference acquisition with personality-based active learning in mobile recommender systems. In: P. Zaphiris, A. Ioannou (eds.) Learning and Collaboration Technologies. Technology-Rich Environments for Learning and Collaboration - First International Conference, LCT 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22–27, 2014, Proceedings, Part II, Lecture Notes in Computer Science, vol. 8524, pp. 105–116. Springer (2014). DOI 10.1007/978-3-319-07485-6_11. URL http://dx.doi.org/10.1007/978-3-319-07485-6_11
  27. 27.
    Braunhofer, M., Kaminskas, M., Ricci, F.: Recommending music for places of interest in a mobile travel guide. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pp. 253–256. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043977. URL http://doi.acm.org/10.1145/2043932.2043977
  28. 28.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, vol. 461, pp. 43–52. San Francisco, CA (1998)Google Scholar
  29. 29.
    Bulander, R., Decker, M., Schiefer, G., Kolmel, B.: Comparison of different approaches for mobile advertising. In: Proceedings of the Second IEEE International Workshop on Mobile Commerce and Services, WMCS ’05, pp. 174–182. IEEE Computer Society, Washington, DC, USA (2005). DOI 10.1109/WMCS.2005.8. URL http://dx.doi.org/10.1109/WMCS.2005.8
  30. 30.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)CrossRefMATHGoogle Scholar
  31. 31.
    Burke, R.: Hybrid web recommender systems. The Adaptive Web pp. 377–408 (2007)Google Scholar
  32. 32.
    Cai, R., Zhang, C., Wang, C., Zhang, L., Ma, W.Y.: Musicsense: Contextual music recommendation using emotional allocation modeling. In: Proceedings of the 15th International Conference on Multimedia, MULTIMEDIA ’07, pp. 553–556. ACM, New York, NY, USA (2007). DOI 10.1145/1291233.1291369. URL http://doi.acm.org/10.1145/1291233.1291369
  33. 33.
    Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User-Adapt. Interact. 24(1–2), 67–119 (2014)CrossRefGoogle Scholar
  34. 34.
    Cantador, I., Castells, P.: Semantic contextualisation in a news recommender system. In: Workshop on Context-Aware Recommender Systems (CARS 2009). New York (2009)Google Scholar
  35. 35.
    Cena, F., Console, L., Gena, C., Goy, A., Levi, G., Modeo, S., Torre, I.: Integrating heterogeneous adaptation techniques to build a flexible and usable mobile tourist guide. AI Communications 19(4), 369–384 (2006)MathSciNetMATHGoogle Scholar
  36. 36.
    Chatterjee, S., Hadi, A.S., Price, B.: Regression analysis by example. John Wiley and Sons (2000)Google Scholar
  37. 37.
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. ACM Sigmod record 26(1), 65–74 (1997)CrossRefGoogle Scholar
  38. 38.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a context-aware electronic tourist guide: some issues and experiences. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 17–24. ACM (2000)Google Scholar
  39. 39.
    Church, K., Smyth, B., Cotter, P., Bradley, K.: Mobile information access: A study of emerging search behavior on the mobile internet. ACM Trans. Web 1(1) (2007). DOI 10.1145/1232722.1232726. URL http://doi.acm.org/10.1145/1232722.1232726
  40. 40.
    Codina, V., Ricci, F., Ceccaroni, L.: Exploiting the semantic similarity of contextual situations for pre-filtering recommendation. In: S. Carberry, S. Weibelzahl, A. Micarelli, G. Semeraro (eds.) User Modeling, Adaptation, and Personalization, Lecture Notes in Computer Science, vol. 7899, pp. 165–177. Springer Berlin Heidelberg (2013). DOI 10.1007/978-3-642-38844-6_14. URL http://dx.doi.org/10.1007/978-3-642-38844-6_14
  41. 41.
    De Carolis, B., Mazzotta, I., Novielli, N., Silvestri, V.: Using common sense in providing personalized recommendations in the tourism domain. In: Workshop on Context-Aware Recommender Systems (CARS 2009). New York (2009)Google Scholar
  42. 42.
    Dourish, P.: What we talk about when we talk about context. Personal and ubiquitous computing 8(1), 19–30 (2004)CrossRefGoogle Scholar
  43. 43.
    Fling, B.: Mobile Design and Development: Practical Concepts and Techniques for Creating Mobile Sites and Web Apps, 1st edn. O’Reilly Media, Inc. (2009)Google Scholar
  44. 44.
    Gorgoglione, M., Panniello, U., Tuzhilin, A.: The effect of context-aware recommendations on customer purchasing behavior and trust. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pp. 85–92. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043951. URL http://doi.acm.org/10.1145/2043932.2043951
  45. 45.
    Hariri, N., Mobasher, B., Burke, R.: Context-aware music recommendation based on latent topic sequential patterns. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 131–138. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365979. URL http://doi.acm.org/10.1145/2365952.2365979
  46. 46.
    Hariri, N., Mobasher, B., Burke, R.: Query-driven context aware recommendation. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13, pp. 9–16. ACM, New York, NY, USA (2013). DOI 10.1145/2507157.2507187. URL http://doi.acm.org/10.1145/2507157.2507187
  47. 47.
    Hussein, T., Linder, T., Gaulke, W., Ziegler, J.: Context-aware recommendations on rails. In: Workshop on Context-Aware Recommender Systems (CARS 2009). New York, NY, USA (2009)Google Scholar
  48. 48.
    Hussein, T., Linder, T., Gaulke, W., Ziegler, J.: Hybreed: A software framework for developing context-aware hybrid recommender systems. User Model. User-Adapt. Interact. 24(1–2), 121–174 (2014)CrossRefGoogle Scholar
  49. 49.
    Jannach, D., Hegelich, K.: A case study on the effectiveness of recommendations in the mobile internet. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys ’09, pp. 205–208. ACM, New York, NY, USA (2009). DOI 10.1145/1639714.1639749. URL http://doi.acm.org/10.1145/1639714.1639749
  50. 50.
    Jiang, T., Tuzhilin, A.: Improving personalization solutions through optimal segmentation of customer bases. IEEE Transactions on Knowledge and Data Engineering 21(3), 305–320 (2009)CrossRefGoogle Scholar
  51. 51.
    Kaminskas, M., Ricci, F.: Contextual music information retrieval and recommendation: State of the art and challenges. Computer Science Review 6(2-3), 89–119 (2012)CrossRefGoogle Scholar
  52. 52.
    Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 79–86. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864727. URL http://doi.acm.org/10.1145/1864708.1864727
  53. 53.
    Karatzoglou, A., Baltrunas, L., Church, K., Böhmer, M.: Climbing the app wall: Enabling mobile app discovery through context-aware recommendations. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pp. 2527–2530. ACM, New York, NY, USA (2012). DOI 10.1145/2396761.2398683. URL http://doi.acm.org/10.1145/2396761.2398683
  54. 54.
    Kenteris, M., Gavalas, D., Economou, D.: Electronic mobile guides: a survey. Personal and Ubiquitous Computing 15(1), 97–111 (2011)CrossRefGoogle Scholar
  55. 55.
    Kimball, R., Ross, M.: The data warehousing toolkit. John Wiley & Sons, New York (1996)Google Scholar
  56. 56.
    Kiseleva, J., Thanh Lam, H., Pechenizkiy, M., Calders, T.: Discovering temporal hidden contexts in web sessions for user trail prediction. In: Proceedings of the 22nd International Conference on World Wide Web Companion, WWW ’13 Companion, pp. 1067–1074. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013). URL http://dl.acm.org/citation.cfm?id=2487788.2488120
  57. 57.
    Koller, D., Sahami, M.: Toward optimal feature selection. In: Proceedings of the 13th International Conference on Machine Learning, pp. 284–292. Morgan Kaufmann (1996)Google Scholar
  58. 58.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 426–434. ACM, New York, NY (2008)Google Scholar
  59. 59.
    Koutrika, G., Bercovitz, B., Garcia-Molina, H.: Flexrecs: expressing and combining flexible recommendations. In: Proceedings of the 35th SIGMOD international conference on Management of data, pp. 745–758. ACM, Providence, RI (2009)Google Scholar
  60. 60.
    Lee, H., Park, S.J.: Moners: A news recommender for the mobile web. Expert Systems with Applications 32(1), 143–150 (2007). DOI http://dx.doi.org/10.1016/j.eswa.2005.11.010. URL http://www.sciencedirect.com/science/article/pii/S0957417405003167
  61. 61.
    Levandoski, J.J., Ekstrand, M.D., Ludwig, M., Eldawy, A., Mokbel, M.F., Riedl, J.: Recbench: Benchmarks for evaluating performance of recommender system architectures. PVLDB 4(11), 911–920 (2011)Google Scholar
  62. 62.
    Levandoski, J.J., Eldawy, A., Mokbel, M.F., Khalefa, M.E.: Flexible and extensible preference evaluation in database systems. ACM Trans. Database Syst. 38(3), 17 (2013)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Liu, H., Motoda, H.: Feature selection for knowledge discovery and data mining. Springer (1998)Google Scholar
  64. 64.
    Lombardi, S., Anand, S.S., Gorgoglione, M.: Context and customer behavior in recommendation. In: Workshop on Context-Aware Recommender Systems (CARS 2009). New YorkGoogle Scholar
  65. 65.
    Mahmood, T., Ricci, F., Venturini, A.: Improving recommendation effectiveness: Adapting a dialogue strategy in online travel planning. J. of IT & Tourism 11(4), 285–302 (2009). DOI 10.3727/109830510X12670455864203. URL http://dx.doi.org/10.3727/109830510X12670455864203
  66. 66.
    Moling, O., Baltrunas, L., Ricci, F.: Optimal radio channel recommendations with explicit and implicit feedback. In: P. Cunningham, N.J. Hurley, I. Guy, S.S. Anand (eds.) Sixth ACM Conference on Recommender Systems, RecSys ’12, Dublin, Ireland, September 9–13, 2012, pp. 75–82. ACM (2012). DOI 10.1145/2365952.2365971. URL http://doi.acm.org/10.1145/2365952.2365971
  67. 67.
    Odic, A., Tkalcic, M., Tasic, J.F., Kosir, A.: Predicting and detecting the relevant contextual information in a movie-recommender system. Interacting with Computers 25(1), 74–90 (2013). DOI 10.1093/iwc/iws003. URL http://dx.doi.org/10.1093/iwc/iws003
  68. 68.
    Oku, K., Nakajima, S., Miyazaki, J., Uemura, S.: Context-aware SVM for context-dependent information recommendation. In: Proceedings of the 7th International Conference on Mobile Data Management, p. 109 (2006)Google Scholar
  69. 69.
    Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to improve predictive modeling of customers in personalization applications. IEEE Transactions on Knowledge and Data Engineering 20(11), 1535–1549 (2008)CrossRefGoogle Scholar
  70. 70.
    Panniello, U., Tuzhilin, A., Gorgoglione, M.: Comparing context-aware recommender systems in terms of accuracy and diversity. User Model. User-Adapt. Interact. 24(1-2), 35–65 (2014)CrossRefGoogle Scholar
  71. 71.
    Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., Pedone, A.: Experimental comparison of pre-vs. post-filtering approaches in context-aware recommender systems. In: Proceedings of the 3rd ACM conference on Recommender systems, pp. 265–268. ACM (2009)Google Scholar
  72. 72.
    Park, H.S., Yoo, J.O., Cho, S.B.: A context-aware music recommendation system using fuzzy bayesian networks with utility theory. In: Proceedings of the Third International Conference on Fuzzy Systems and Knowledge Discovery, FSKD’06, pp. 970–979. Springer-Verlag, Berlin, Heidelberg (2006). DOI 10.1007/11881599_121. URL http://dx.doi.org/10.1007/11881599_121
  73. 73.
    Park, M.H., Hong, J.H., Cho, S.B.: Location-based recommendation system using bayesian user’s preference model in mobile devices. In: Proceedings of the 4th International Conference on Ubiquitous Intelligence and Computing, UIC’07, pp. 1130–1139. Springer-Verlag, Berlin, Heidelberg (2007). URL http://dl.acm.org/citation.cfm?id=2391319.2391438
  74. 74.
    Pennock, D.M., Horvitz, E.: Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach. In: IJCAI’99 Workshop: Machine Learning for Information Filtering (1999)Google Scholar
  75. 75.
    Ramakrishnan, R., Gehrke, J.: Database Management Systems. USA: McGraw Hill Companies (2000)Google Scholar
  76. 76.
    Reddy, S., Mascia, J.: Lifetrak: Music in tune with your life. In: Proceedings of the 1st ACM International Workshop on Human-centered Multimedia, HCM ’06, pp. 25–34. ACM, New York, NY, USA (2006). DOI 10.1145/1178745.1178754. URL http://doi.acm.org/10.1145/1178745.1178754
  77. 77.
    Ricci, F.: Mobile recommender systems. J. of IT & Tourism 12(3), 205–231 (2010)Google Scholar
  78. 78.
    Ricci, F., Nguyen, Q.N.: Mobyrek: A conversational recommender system for on-the-move travelers. Destination Recommendation Systems: Behavioural Foundations and Applications pp. 281–294 (2006)Google Scholar
  79. 79.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer (2011)Google Scholar
  80. 80.
    Sae-Ueng, S., Pinyapong, S., Ogino, A., Kato, T.: Personalized shopping assistance service at ubiquitous shop space. In: Proceedings of the 22nd International Conference on Advanced Information Networking and Applications - Workshops, AINAW ’08, pp. 838–843. IEEE Computer Society, Washington, DC, USA (2008). DOI 10.1109/WAINA.2008.287. URL http://dx.doi.org/10.1109/WAINA.2008.287
  81. 81.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, pp. 285–295. ACM (2001)Google Scholar
  82. 82.
    Sarwat, M., Avery, J., Mokbel, M.F.: A recdb in action: Recommendation made easy in relational databases. PVLDB 6(12), 1242–1245 (2013)Google Scholar
  83. 83.
    Sarwat, M., Levandoski, J.J., Eldawy, A., Mokbel, M.F.: Lars*: An efficient and scalable location-aware recommender system. IEEE Trans. Knowl. Data Eng. 26(6), 1384–1399 (2014)CrossRefGoogle Scholar
  84. 84.
    Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci et al. [79], pp. 257–297Google Scholar
  85. 85.
    Smyth, B., Cotter, P.: Mp3 mobile portals, profiles and personalization. In: Web Dynamics, pp. 411–433. Springer Berlin Heidelberg (2004). DOI 10.1007/978-3-662-10874-1_17. URL http://dx.doi.org/10.1007/978-3-662-10874-1_17
  86. 86.
    Van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application COMPASS. In: W. Nejdl, P. De Bra (eds.) Adaptive Hypermedia, pp. 235–244. Springer Verlag (2004)Google Scholar
  87. 87.
    Webster, N.: Webster’s new twentieth century dictionary of the English language. Springfield, MA: Merriam-Webster, Inc. (1980)Google Scholar
  88. 88.
    Woerndl, W., Huebner, J., Bader, R., Gallego-Vico, D.: A model for proactivity in mobile, context-aware recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pp. 273–276. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043981. URL http://doi.acm.org/10.1145/2043932.2043981
  89. 89.
    Yu, Z., Zhou, X., Zhang, D., Chin, C.Y., Wang, X., Men, J.: Supporting context-aware media recommendations for smart phones. IEEE Pervasive Computing 5(3), 68–75 (2006)CrossRefGoogle Scholar
  90. 90.
    Zheng, Y., Burke, R., Mobasher, B.: Differential context relaxation for context-aware travel recommendation. In: C. Huemer, P. Lops (eds.) E-Commerce and Web Technologies, Lecture Notes in Business Information Processing, vol. 123, pp. 88–99. Springer Berlin Heidelberg (2012). DOI 10.1007/978-3-642-32273-0_8. URL http://dx.doi.org/10.1007/978-3-642-32273-0_8

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Information and Decision SciencesUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Information, Operations and Management Sciences, Stern School of BusinessNew York UniversityNew YorkUSA

Personalised recommendations