Semantics-Aware Content-Based Recommender Systems

  • Marco de Gemmis
  • Pasquale Lops
  • Cataldo Musto
  • Fedelucio Narducci
  • Giovanni Semeraro

Abstract

Content-based recommender systems (CBRSs) rely on item and user descriptions (content) to build item representations and user profiles that can be effectively exploited to suggest items similar to those a target user already liked in the past. Most content-based recommender systems use textual features to represent items and user profiles, hence they suffer from the classical problems of natural language ambiguity. This chapter presents a comprehensive survey of semantic representations of items and user profiles that attempt to overcome the main problems of the simpler approaches based on keywords. We propose a classification of semantic approaches into top-down and bottom-up. The former rely on the integration of external knowledge sources, such as ontologies, encyclopedic knowledge and data from the Linked Data cloud, while the latter rely on a lightweight semantic representation based on the hypothesis that the meaning of words depends on their use in large corpora of textual documents. The chapter shows how to make recommender systems aware of semantics to realize a new generation of content-based recommenders.

References

  1. 1.
    Abel, F., Gao, Q., Houben, G.J., Tao, K.: Analyzing User Modeling on Twitter for Personalized News Recommendations. In: J.A. Konstan, R. Conejo, J. Marzo, N. Oliver (eds.) Proc. of the 19th International Conference on User Modeling, Adaption and Personalization, Lecture Notes in Computer Science, vol. 6787, pp. 1–12. Springer (2011)Google Scholar
  2. 2.
    Abel, F., Gao, Q., Houben, G.J., Tao, K.: Semantic Enrichment of Twitter Posts for User Profile Construction on the Social Web. In: G. Antoniou, M. Grobelnik, E.P.B. Simperl, B. Parsia, D. Plexousakis, P.D. Leenheer, J.Z. Pan (eds.) Proc. of the 8th Extended Semantic Web Conference, ESWC 2011, Part II, Lecture Notes in Computer Science, vol. 6644, pp. 375–389. Springer (2011)Google Scholar
  3. 3.
    Achlioptas, D.: Database-friendly random projections. In: P. Buneman (ed.) PODS. ACM (2001)Google Scholar
  4. 4.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005). DOI 10.1145/1055709.1055714. URL http://doi.acm.org/10.1145/1055709.1055714Google Scholar
  5. 5.
    Adomavicius, G., Tuzhilin, A.: Context-Aware Recommender Systems. In: F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (eds.) Recommender Systems Handbook, pp. 217–253. Springer (2011)Google Scholar
  6. 6.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley (1999)Google Scholar
  7. 7.
    Bambini, R., Cremonesi, P., Turrin, R.: A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment. In: F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (eds.) Recommender Systems Handbook, pp. 299–331. Springer (2011)Google Scholar
  8. 8.
    Banerjee, S., Ramanathan, K., Gupta, A.: Clustering Short Texts Using Wikipedia. In: Proc. of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’07, pp. 787–788. ACM, New York, NY, USA (2007). DOI 10.1145/1277741.1277909. URL http://doi.acm.org/10.1145/1277741.1277909Google Scholar
  9. 9.
    Bentivogli, L., Pianta, E., Girardi, C.: MultiWordNet: Developing an Aligned Multilingual Database. In: First International Conference on Global WordNet, Mysore, India (2002)Google Scholar
  10. 10.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 28–37 (2001)Google Scholar
  11. 11.
    Berry, M.W.: Large-scale Sparse Singular Value Computations. International Journal of Supercomputer Applications 6(1), 13–49 (1992)Google Scholar
  12. 12.
    Billsus, D., Pazzani, M.: Learning Probabilistic User Models. In: Proc. of the Workshop on Machine Learning for User Modeling. Chia Laguna, IT (1997). URL citeseer.nj.nec.com/billsus96learning.html
  13. 13.
    Bizer, C.: The Emerging Web of Linked Data. IEEE Intelligent Systems 24(5), 87–92 (2009)CrossRefGoogle Scholar
  14. 14.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  15. 15.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - A crystallization point for the Web of Data. Web Semant. 7(3), 154–165 (2009). DOI 10.1016/j.websem.2009.07.002. URL http://dx.doi.org/10.1016/j.websem.2009.07.002Google Scholar
  16. 16.
    Blanco-Fernandez, Y., Pazos-Arias, J.J., Gil-Solla, A., Ramos-Cabrer, M., Lopez-Nores, M.: Providing Entertainment by Content-based Filtering and Semantic Reasoning in Intelligent Recommender Systems. IEEE Transactions on Consumer Electronics 54(2), 727–735 (2008)CrossRefGoogle Scholar
  17. 17.
    Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a Collaboratively Created Graph Database for Structuring Human Knowledge. In: J.T.L. Wang (ed.) Proc. of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 1247–1250. ACM (2008)Google Scholar
  18. 18.
    Buchanan, B.G., Feigenbaum, E.: Forward. In: R. Davis, D. Lenat (eds.) Knowledge-Based Systems in Artificial Intelligence. McGraw-Hill (1982)Google Scholar
  19. 19.
    Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Computational Linguistics 32(1), 13–47 (2006)CrossRefMATHGoogle Scholar
  20. 20.
    Cambria, E., Schuller, B., Liu, B., Wang, H., Havasi, C.: Knowledge-Based Approaches to Concept-Level Sentiment Analysis. IEEE Intelligent Systems 28(2), 12–14 (2013)CrossRefGoogle Scholar
  21. 21.
    Cantador, I., Bellogín, A., Castells, P.: A Multilayer Ontology-based Hybrid Recommendation Model. AI Communications 21(2), 203–210 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    Cantador, I., Bellogín, A., Castells, P.: News@hand: A Semantic Web Approach to Recommending News. In: W. Nejdl, J. Kay, P. Pu, E. Herder (eds.) Adaptive Hypermedia and Adaptive Web-Based Systems, Lecture Notes in Computer Science, vol. 5149, pp. 279–283. Springer (2008)Google Scholar
  23. 23.
    Cantador, I., Bellogín, A., Castells, P.: Ontology-based Personalised and Context-aware Recommendations of News Items. In: Proc. of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology-Volume 01, pp. 562–565. IEEE Computer Society (2008)Google Scholar
  24. 24.
    Cantador, I., Szomszor, M., Alani, H., Fernández, M., Castells, P.: Enriching Ontological User Profiles with Tagging History for Multi-domain Recommendations. In: Proc. of the 1st International Workshop on Collective Semantics: Collective Intelligence & the Semantic Web (2008)Google Scholar
  25. 25.
    Capelle, M., Hogenboom, F., Hogenboom, A., Frasincar, F.: Semantic News Recommendation Using Wordnet and Bing Similarities. In: S.Y. Shin, J.C. Maldonado (eds.) Proc. of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pp. 296–302. ACM (2013)Google Scholar
  26. 26.
    Cena, F., Likavec, S., Osborne, F.: Anisotropic Propagation of User Interests in Ontology-based User Models. Inf. Sci. 250, 40–60 (2013)CrossRefGoogle Scholar
  27. 27.
    Chen, X., Li, L., Xu, G., Yang, Z., Kitsuregawa, M.: Recommending Related Microblogs: A Comparison Between Topic and WordNet based Approaches. In: J. Hoffmann, B. Selman (eds.) Proc. of the Twenty-Sixth AAAI Conference on Artificial Intelligence. AAAI Press (2012)Google Scholar
  28. 28.
    Chui, M., Manyika, J., Kuiken, S.V.: What executives should know about open data. McKinsey Quarterly, January 2014 (2014)Google Scholar
  29. 29.
    Ciesielczyk, M., Szwabe, A., Prus-Zajaczkowski, B.: Interactive Collaborative Filtering with RI-based Approximation of SVD. In: Proc. of the 3rd International Conference on Computational Intelligence and Industrial Application (PACIIA), pp. 243–246. IEEE Press (2010)Google Scholar
  30. 30.
    Codina, V., Ricci, F., Ceccaroni, L.: Exploiting the Semantic Similarity of Contextual Situations for Pre-filtering Recommendation. In: S. Carberry, S. Weibelzahl, A. Micarelli, G. Semeraro (eds.) Proc. of the 21st International Conference on User Modeling, Adaptation, and Personalization, UMAP 2013, Lecture Notes in Computer Science, vol. 7899, pp. 165–177. Springer (2013)Google Scholar
  31. 31.
    Codina, V., Ricci, F., Ceccaroni, L.: Local Context Modeling with Semantic Pre-filtering. In: Q. Yang, I. King, Q. Li, P. Pu, G. Karypis (eds.) Seventh ACM Conference on Recommender Systems, RecSys ’13, pp. 363–366. ACM (2013)Google Scholar
  32. 32.
    Cremonesi, P., Turrin, R., Airoldi, F.: Hybrid Algorithms for Recommending New Items. In: Proc. of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, pp. 33–40. ACM (2011)Google Scholar
  33. 33.
    Csomai, A., Mihalcea, R.: Linking Documents to Encyclopedic Knowledge. IEEE Intelligent Systems 23(5), 34–41 (2008). DOI 10.1109/MIS.2008.86. URL http://dx.doi.org/10.1109/MIS.2008.86Google Scholar
  34. 34.
    de Gemmis, M., Di Noia, T., Lops, P., T.Lukasiewicz, Semeraro, G. (eds.): Proc. of the International Workshop on Semantic Technologies meet Recommender Systems & Big Data, Boston, USA, November 11, 2012, CEUR Workshop Proceedings, vol. 919. CEUR-WS.org (2012)Google Scholar
  35. 35.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  36. 36.
    Degemmis, M., Lops, P., Semeraro, G.: A Content-collaborative Recommender that Exploits WordNet-based User Profiles for Neighborhood Formation. User Modeling and User-Adapted Interaction: The Journal of Personalization Research (UMUAI) 17(3), 217–255 (2007). Springer Science + Business Media B.V.Google Scholar
  37. 37.
    Degemmis, M., Lops, P., Semeraro, G., Basile, P.: Integrating Tags in a Semantic Content-based Recommender. In: P. Pu, D.G. Bridge, B. Mobasher, F. Ricci (eds.) Proc. of the 2008 ACM Conference on Recommender Systems, RecSys 2008, pp. 163–170. ACM (2008)Google Scholar
  38. 38.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D.: Exploiting the Web of Data in Model-based Recommender Systems. In: P. Cunningham, N.J. Hurley, I. Guy, S.S. Anand (eds.) Proc. of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 253–256. ACM (2012)Google Scholar
  39. 39.
    Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D., Zanker, M.: Linked Open Data to Support Content-based Recommender Systems. In: V. Presutti, H.S. Pinto (eds.) I-SEMANTICS 2012 - 8th International Conference on Semantic Systems, pp. 1–8. ACM (2012)Google Scholar
  40. 40.
    Domingos, P., Pazzani, M.J.: On the Optimality of the Simple Bayesian Classifier under Zero-One Loss. Machine Learning 29(2–3), 103–130 (1997)CrossRefMATHGoogle Scholar
  41. 41.
    Dunlop, M.D.: The Effect of Accessing Nonmatching Documents on Relevance Feedback. ACM Trans. Inf. Syst. 15, 137–153 (1997)CrossRefGoogle Scholar
  42. 42.
    Egozi, O., Gabrilovich, E., Markovitch, S.: Concept-based Feature Generation and Selection for Information Retrieval. In: Proc. of the 23rd National Conference on Artificial Intelligence - Volume 2, AAAI’08, pp. 1132–1137. AAAI Press (2008). URL http://dl.acm.org/citation.cfm?id=1620163.1620248
  43. 43.
    Egozi, O., Markovitch, S., Gabrilovich, E.: Concept-Based Information Retrieval using Explicit Semantic Analysis. ACM Transactions on Information Systems 29(2), 8:1–8:34 (2011).Google Scholar
  44. 44.
    Fernández-Tobías, I., Kaminskas, M., Cantador, I., Ricci, F.: A Generic Semantic-based Framework for Cross-domain Recommendation. In: I. Cantador, P. Brusilovsky, T. Kuflik (eds.) HetRec ’11 Proc. of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, pp. 25–32. ACM New York (2011)Google Scholar
  45. 45.
    Fernando, S., Hall, M., Agirre, E., Soroa, A., Clough, P., Stevenson, M.: Comparing Taxonomies for Organising Collections of Documents. In: M. Kay, C. Boitet (eds.) Proc. of the 24th International Conference on Computational Linguistics, COLING 2012, pp. 879–894. Indian Institute of Technology Bombay (2012). URL http://www.aclweb.org/anthology/C12-1054
  46. 46.
    Ferragina, P., Scaiella, U.: Fast and Accurate Annotation of Short Texts with Wikipedia Pages. IEEE Software 29(1), 70–75 (2012)CrossRefGoogle Scholar
  47. 47.
    Foltz, P.W., Dumais, S.T.: Personalized Information Delivery: an Analysis of Information Filtering Methods. Communications of the ACM 35(12), 51–60 (1992)CrossRefGoogle Scholar
  48. 48.
    Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis. In: M.M. Veloso (ed.) Proc. of the 20th International Joint Conference on Artificial Intelligence, pp. 1606–1611 (2007)Google Scholar
  49. 49.
    Gabrilovich, E., Markovitch, S.: Wikipedia-based Semantic Interpretation for Natural Language Processing. Journal of Artificial Intelligence Research (JAIR) 34, 443–498 (2009)MATHGoogle Scholar
  50. 50.
    Giles, J.: Internet Encyclopaedias Go Head to Head. Nature 438(7070), 900–901 (2005). URL http://dx.doi.org/10.1038/438900a
  51. 51.
    Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM 35(12), 61–70 (1992). URL http://www.xerox.com/PARC/dlbx/tapestry-papers/TN44.ps. Special Issue on Information Filtering
  52. 52.
    Halevy, A.Y., Norvig, P., Pereira, F.: The Unreasonable Effectiveness of Data. IEEE Intelligent Systems 24(2), 8–12 (2009)CrossRefGoogle Scholar
  53. 53.
    Harris, Z.S.: Mathematical Structures of Language. Interscience, New York, (1968)MATHGoogle Scholar
  54. 54.
    Hassanzadeh, O., Consens, M.P.: Linked Movie Data Base. In: C.Bizer, T. Heath, T. Berners-Lee, K. Idehen (eds.) Proc. of the WWW2009 Workshop on Linked Data on the Web, LDOW 2009, CEUR Workshop Proceedings, vol. 538. CEUR-WS.org (2009)Google Scholar
  55. 55.
    Hecht-Nielsen, R.: Context Vectors: General Purpose Approximate Meaning Representations Self-organized from Raw Data. Computational Intelligence: Imitating Life, IEEE Press pp. 43–56 (1994)Google Scholar
  56. 56.
    Heitmann, B., Hayes, C.: Using Linked Data to Build Open, Collaborative Recommender Systems. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence, pp. 76–81. AAAI (2010)Google Scholar
  57. 57.
    Herlocker, L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)CrossRefGoogle Scholar
  58. 58.
    Holte, R.C., Yan, J.N.Y.: Inferring What a User Is Not Interested in. In: G.I. McCalla (ed.) Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 1081, pp. 159–171 (1996)Google Scholar
  59. 59.
    Hu, J., Fang, L., Cao, Y., Zeng, H., Li, H., Yang, Q., Chen, Z.: Enhancing Text Clustering by Leveraging Wikipedia Semantics. In: S. Myaeng, D.W. Oard, F. Sebastiani, T. Chua, M. Leong (eds.) Proc. of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’08, pp. 179–186. ACM (2008)Google Scholar
  60. 60.
    Hu, R., Pu, P.: A study on user perception of personality-based recommender systems. In: User Modeling, Adaptation, and Personalization, 18th International Conference, UMAP 2010, Big Island, HI, USA, June 20–24, 2010. Proceedings, pp. 291–302 (2010).Google Scholar
  61. 61.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: An introduction. Cambridge University Press (2010)Google Scholar
  62. 62.
    Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz Maps into a Hilbert Space. Contemporary Mathematics (1984)Google Scholar
  63. 63.
    Jones, D., Bench-Capon, T., Visser, P.: Methodologies for Ontology Development (1998)Google Scholar
  64. 64.
    Kaminskas, M., Fernández-Tobías, I., Ricci, F., Cantador, I.: Knowledge-based Music Retrieval for Places of Interest. In: C.C.S. Liem, M. Müller, S.K. Tjoa, G. Tzanetakis (eds.) Proc. of the 2nd International ACM workshop on Music information retrieval with user-centered and multimodal strategies, MIRUM ’12, pp. 19–24 (2012)Google Scholar
  65. 65.
    Kanerva, P.: Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors. Cognitive Computation 1(2), 139–159 (2009)CrossRefGoogle Scholar
  66. 66.
    Kaski, S.: Dimensionality Reduction by Random Mapping: Fast Similarity Computation for Clustering. In: Proc. of the International Joint Conference on Neural Networks, vol. 1, pp. 413–418. IEEE (1998)Google Scholar
  67. 67.
    Khrouf, H., Troncy, R.: Hybrid Event Recommendation using Linked Data and User Diversity. In: Q. Yang, I. King, Q. Li, P. Pu, G. Karypis (eds.) Seventh ACM Conference on Recommender Systems, RecSys ’13, pp. 185–192. ACM (2013)Google Scholar
  68. 68.
    Klema, V., Laub, A.: The Singular Value Decomposition: its Computation and Some Applications. IEEE Transactions on Automatic Control 25(2), 164–176 (1980)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Self Organization of a Massive Document Collection. IEEE Transactions on Neural Networks 11(3), 574–585 (2000)CrossRefGoogle Scholar
  70. 70.
    Lewis, D.D., Ringuette, M.: A Comparison of Two Learning Algorithms for Text Categorization. In: Proc. of the Annual Symposium on Document Analysis and Information Retrieval, pp. 81–93. Las Vegas, US (1994)Google Scholar
  71. 71.
    Lops, P., Musto, C., Narducci, F., de Gemmis, M., Basile, P., Semeraro, G.: MARS: a MultilAnguage Recommender System. In: P. Brusilovsky, I. Cantador, Y. Koren, T. Kuflik, M. Weimer (eds.) HetRec ’10 Proc. of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, pp. 24–31. ACM New York (2010)Google Scholar
  72. 72.
    Lowe, W.: Towards a Theory of Semantic Space. In: Proc. of the Twenty-Third Annual Conference of the Cognitive Science Society, pp. 576–581. Lawrence Erlbaum Associates (2001)Google Scholar
  73. 73.
    Magen, A.: Dimensionality Reductions that Preserve Volumes and Distance to Affine Spaces, and their Algorithmic Applications. In: Randomization and approximation techniques in computer science, pp. 239–253. Springer (2002)Google Scholar
  74. 74.
    Magnini, B., Strapparava, C.: Experiments in Word Domain Disambiguation for Parallel Texts. In: Proc. of SIGLEX Workshop on Word Senses and Multi-linguality, Hong-Kong, October 2000. ACL (2000)Google Scholar
  75. 75.
    Magnini, B., Strapparava, C.: Improving User Modelling with Content-based Techniques. In: M. Bauer, P.J. Gmytrasiewicz, J. Vassileva (eds.) Proc. of the 8th International Conference of User Modeling, Lecture Notes in Computer Science, vol. 2109, pp. 74–83. Springer (2001)Google Scholar
  76. 76.
    Mairesse, F., Walker, M.A., Mehl, M.R., Moore, R.K.: Using linguistic cues for the automatic recognition of personality in conversation and text. J. Artif. Intell. Res. (JAIR) 30, 457–500 (2007). DOI 10.1613/jair.2349. URL http://dx.doi.org/10.1613/jair.2349Google Scholar
  77. 77.
    McCallum, A., Nigam, K.: A Comparison of Event Models for Naïve Bayes Text Classification. In: Proc. of the AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41–48. AAAI Press (1998)Google Scholar
  78. 78.
    McCarey, F., Cinnéide, M., Kushmerick, N.: Recommending Library Methods: An Evaluation of the Vector Space Model (VSM) and Latent Semantic Indexing (LSI). In: M. Morisio (ed.) Proc. of the 9th International Conference on Software Reuse, ICSR 2006, Lecture Notes in Computer Science, vol. 4039, pp. 217–230. Springer (2006)Google Scholar
  79. 79.
    McMillan, C., Poshyvanyk, D., Grechanik, M.: Recommending Source Code Examples via API Call Usages and Documentation. In: Proc. of the 2nd International Workshop on Recommendation Systems for Software Engineering, pp. 21–25. ACM (2010)Google Scholar
  80. 80.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding Light on the Web of Documents. In: C. Ghidini, A.N. Ngomo, S.N. Lindstaedt, T. Pellegrini (eds.) Proceedings the 7th International Conference on Semantic Systems, I-SEMANTICS 2011, pp. 1–8. ACM (2011)Google Scholar
  81. 81.
    Middleton, S.E., De Roure, D., Shadbolt, N.R.: Ontology-based Recommender Systems. In: S. Staab, R. Studer (eds.) Handbook on ontologies, pp. 477–498. Springer (2004)Google Scholar
  82. 82.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological User Profiling in Recommender Systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)CrossRefGoogle Scholar
  83. 83.
    Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting Similarities among Languages for Machine Translation. CoRR abs/1309.4168 (2013)Google Scholar
  84. 84.
    Miller, G.: WordNet: An On-Line Lexical Database. International Journal of Lexicography 3(4) (1990). (Special Issue)Google Scholar
  85. 85.
    Milne, D., Witten, I.H.: Learning to Link with Wikipedia. In: J.G. Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang, D.A. Evans, A. Kolcz, K. Choi, A. Chowdhury (eds.) Proc. of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, pp. 509–518. ACM (2008)Google Scholar
  86. 86.
    Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)MATHGoogle Scholar
  87. 87.
    Mohammad, S., Hirst, G.: Distributional Measures of Semantic Distance: A Survey. CoRR abs/1203.1858 (2012)Google Scholar
  88. 88.
    Moro, A., Raganato, A., Navigli, R.: Entity Linking meets Word Sense Disambiguation: a Unified Approach. Transactions of the Association for Computational Linguistics 2, 231–244 (2014)Google Scholar
  89. 89.
    Musto, C., Basile, P., Lops, P., de Gemmis, M., Semeraro, G.: Linked Open Data-enabled Strategies for Top-N Recommendations. In: T. Bogers, M. Koolen, I. Cantador (eds.) Proc. of the 1st Workshop on New Trends in Content-based Recommender Systems, ACM RecSys 2014, CEUR Workshop Proceedings, vol. 1245, pp. 49–56. CEUR-WS.org (2014)Google Scholar
  90. 90.
    Musto, C., Narducci, F., Basile, P., Lops, P., de Gemmis, M., Semeraro, G.: Cross-Language Information Filtering: Word Sense Disambiguation vs. Distributional Models. In: R. Pirrone, F. Sorbello (eds.) AI*IA, Lecture Notes in Computer Science, vol. 6934, pp. 250–261. Springer (2011)Google Scholar
  91. 91.
    Musto, C., Narducci, F., Lops, P., Semeraro, G., de Gemmis, M., Barbieri, M., Korst, J.H.M., Pronk, V., Clout, R.: Enhanced Semantic TV-Show Representation for Personalized Electronic Program Guides. In: Judith.Masthoff, B. Mobasher, M.C. Desmarais, R. Nkambou (eds.) Proc. of the 20th International Conference on User Modeling, Adaptation, and Personalization, UMAP 2012, Lecture Notes in Computer Science, vol. 7379, pp. 188–199. Springer (2012)Google Scholar
  92. 92.
    Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Random Indexing and Negative User Preferences for Enhancing Content-Based Recommender Systems. In: C. Huemer, T. Setzer (eds.) Proc. of the 12th International Conference on Electronic Commerce and Web Technologies, EC-Web 2011, Lecture Notes in Business Information Processing, vol. 85, pp. 270–281. Springer (2011)Google Scholar
  93. 93.
    Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Contextual eVSM: a Content-Based Context-Aware Recommendation Framework Based on Distributional Semantics. In: C. Huemer, P. Lops (eds.) Proc. of the 14th International Conference on E-Commerce and Web Technologies, EC-Web 2013, Lecture Notes in Business Information Processing, vol. 152, pp. 125–136. Springer (2013)Google Scholar
  94. 94.
    Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Combining Distributional Semantics and Entity Linking for Context-Aware Content-Based Recommendation. In: Proc. of the 22nd International Conference on User Modeling, Adaptation, and Personalization, UMAP 2014, Lecture Notes in Computer Science, vol. 8538, pp. 381–392. Springer (2014)Google Scholar
  95. 95.
    Musto, C., Semeraro, G., Lops, P., de Gemmis, M., Narducci, F.: Leveraging Social Media Sources to Generate Personalized Music Playlists. In: C. Huemer, P. Lops (eds.) Proc. of the 13th International Conference on E-Commerce and Web Technologies, EC-Web 2012, Lecture Notes in Business Information Processing, vol. 123, pp. 112–123. Springer (2012)Google Scholar
  96. 96.
    Narducci, F., Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Exploiting Big Data for Enhanced Representations in Content-Based Recommender Systems. In: C. Huemer, P. Lops (eds.) Proc. of the 14th International Conference on E-Commerce and Web Technologies, EC-Web 2013, Lecture Notes in Business Information Processing, vol. 152, pp. 182–193. Springer (2013)Google Scholar
  97. 97.
    Narducci, F., Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Leveraging Encyclopedic Knowledge for Transparent and Serendipitous User Profiles. In: S. Carberry, S. Weibelzahl, A. Micarelli, G. Semeraro (eds.) Proc. of the 21st International Conference on User Modeling, Adaptation, and Personalization, UMAP 2013, Lecture Notes in Computer Science, vol. 7899, pp. 350–352. Springer (2013)Google Scholar
  98. 98.
    Narducci, F., Palmonari, M., Semeraro, G.: Cross-Language Semantic Retrieval and Linking of e-Gov Services. In: H. Alani, L. Kagal, A. Fokoue, P. Groth, C. Biemann, J. Parreira, L. Aroyo, N. Noy, C. Welty, K. Janowicz (eds.) The Semantic Web - ISWC 2013, Lecture Notes in Computer Science, vol. 8219, pp. 130–145. Springer Berlin Heidelberg (2013).CrossRefGoogle Scholar
  99. 99.
    Navigli, R., Jurgens, D., Vannella, D.: SemEval-2013 Task 12: Multilingual Word Sense Disambiguation. In: Proc. of the 7th International Workshop on Semantic Evaluation (SemEval 2013), in conjunction with the 2nd Joint Conference on Lexical and Computational Semantics (*SEM 2013), pp. 222–231. Atlanta, USA (2013)Google Scholar
  100. 100.
    Navigli, R., Ponzetto, S.P.: BabelNet: The automatic Construction, Evaluation and Application of a Wide-coverage Multilingual Semantic Network. Artif. Intell. 193, 217–250 (2012)MathSciNetMATHGoogle Scholar
  101. 101.
    Navigli, R., Ponzetto, S.P.: BabelRelate! A Joint Multilingual Approach to Computing Semantic Relatedness. In: J. Hoffmann, B. Selman (eds.) Proc. of the Twenty-Sixth AAAI Conference on Artificial Intelligence, AAAI-12. AAAI Press (2012)Google Scholar
  102. 102.
    Navigli, R., Ponzetto, S.P.: Joining Forces Pays Off: Multilingual Joint Word Sense Disambiguation. In: Proc. of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1399–1410. Jeju, Korea (2012)Google Scholar
  103. 103.
    Ostuni, V.C., Di, T., Sciascio, E.D., Mirizzi, R.: Top-N Recommendations from Implicit Feedback Leveraging Linked Open Data. In: Q. Yang, I. King, Q. Li, P. Pu, G. Karypis (eds.) Seventh ACM Conference on Recommender Systems, RecSys ’13, pp. 85–92. ACM (2013)Google Scholar
  104. 104.
    Ostuni, V.C., Di Noia, T., Mirizzi, R., Romito, D., Sciascio, E.D.: Cinemappy: a Context-aware Mobile App for Movie Recommendations boosted by DBpedia. In: M. de Gemmis, T. Di Noia, P. Lops, T. Lukasiewicz, G. Semeraro (eds.) Proc. of the International Workshop on Semantic Technologies meet Recommender Systems & Big Data, ACM RecSys, CEUR Workshop Proceedings, vol. 919, pp. 37–48. CEUR-WS.org (2012)Google Scholar
  105. 105.
    Pappas, N., Popescu-Belis, A.: Combining Content with User Preferences for Non-Fiction Multimedia Recommendation: A Study on TED Lectures. Multimedia Tools and Applications (2014)Google Scholar
  106. 106.
    Passant, A.: dbrec - Music Recommendations Using DBpedia. In: P.F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J.Z. Pan, I. Horrocks, B. Glimm (eds.) The Semantic Web - ISWC 2010 - 9th International Semantic Web Conference, Revised Selected Papers, Part II, Lecture Notes in Computer Science, vol. 6497, pp. 209–224. Springer (2010)Google Scholar
  107. 107.
    Passant, A.: Measuring Semantic Distance on Linking Data and Using it for Resources Recommendations. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence, pp. 93–98. AAAI (2010)Google Scholar
  108. 108.
    Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: P. Brusilovsky, A. Kobsa, W. Nejdl (eds.) The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 325–341 (2007). ISBN 978-3-540-72078-2Google Scholar
  109. 109.
    Potthast, M., Stein, B., Anderka, M.: A Wikipedia-based Multilingual Retrieval Model. In: C. Macdonald, I. Ounis, V. Plachouras, I. Ruthven, R.W. White (eds.) Proc. of the 30th European conference on Advances in information retrieval, ECIR 2008, Lecture Notes in Computer Science, vol. 4956, pp. 522–530. Springer (2008)Google Scholar
  110. 110.
    Raimond, Y., Sandler, M.B.: A Web of Musical Information. In: J.P. Bello, E. Chew, D. Turnbull (eds.) International Conference on Music Information Retrieval, pp. 263–268 (2008)Google Scholar
  111. 111.
    Rich, E.: User Modeling via Stereotypes. Cognitive Science 3, 329–354 (1979)Google Scholar
  112. 112.
    Rizzo, G., Troncy, R.: NERD: a Framework for Unifying Named Entity Recognition and Disambiguation Extraction Tools. In: W. Daelemans, M. Lapata, L. Màrquez (eds.) Proc. of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 73–76. Association for Computational Linguistics (2012)Google Scholar
  113. 113.
    Rocchio, J.: Relevance Feedback Information Retrieval. In: G. Salton (ed.) The SMART retrieval system - experiments in automated document processing, pp. 313–323. Prentice-Hall, Englewood Cliffs, NJ (1971)Google Scholar
  114. 114.
    Rubenstein, H., Goodenough, J.B.: Contextual Correlates of Synonymy. Commun. ACM 8(10), 627–633 (1965).CrossRefGoogle Scholar
  115. 115.
    Sahlgren, M.: An Introduction to Random Indexing. In: Proc. of the Methods and Applications of Semantic Indexing Workshop at the 7th International Conference on Terminology and Knowledge Engineering, TKE (2005)Google Scholar
  116. 116.
    Sahlgren, M.: The Word-Space Model: Using Distributional Analysis to Represent Syntagmatic and Paradigmatic Relations between Words in High-dimensional Vector Spaces. Ph.D. thesis, Stockholm University (2006)Google Scholar
  117. 117.
    Salton, G.: Automatic Text Processing. Addison-Wesley (1989)Google Scholar
  118. 118.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)MATHGoogle Scholar
  119. 119.
    Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1) (2002)Google Scholar
  120. 120.
    Semeraro, G., Lops, P., Basile, P., Gemmis, M.d.: Knowledge Infusion into Content-based Recommender Systems. In: L.D. Bergman, A. Tuzhilin, R.D. Burke, A. Felfernig, L. Schmidt-Thieme (eds.) Proc. of the 2009 ACM Conference on Recommender Systems, RecSys 2009, New York, NY, USA, October 23–25, 2009, pp. 301–304. ACM (2009)Google Scholar
  121. 121.
    Shoval, P., Maidel, V., Shapira, B.: An Ontology-Content-based Filtering Method. International Journal of Information Theories and Applications 15, 303–314 (2008)Google Scholar
  122. 122.
    Symeonidis, P.: Content-based Dimensionality Reduction for Recommender Systems. In: Data Analysis, Machine Learning and Applications, pp. 619–626. Springer (2008)Google Scholar
  123. 123.
    Szwabe, A., Ciesielczyk, M., Janasiewicz, T.: Semantically Enhanced Collaborative Filtering Based on RSVD. In: P. Jedrzejowicz, N.T. Nguyen, K. Hoang (eds.) Proc. of Computational Collective Intelligence. Technologies and Applications - Third International Conference, ICCCI 2011, Part II, Lecture Notes in Computer Science, vol. 6923, pp. 10–19. Springer (2011)Google Scholar
  124. 124.
    Terzi, M., Ferrario, M., Whittle, J.: Free Text In User Reviews: Their Role In Recommender Systems. In: Proc. of the Workshop on Recommender Systems and the Social Web, 3rd ACM Conf. on Recommender Systems, pp. 45–48 (2011)Google Scholar
  125. 125.
    Turney, P.D., Pantel, P.: From Frequency to Meaning: Vector Space Models of Semantics. J. Artif. Intell. Res. (JAIR) 37, 141–188 (2010)Google Scholar
  126. 126.
    Vempala, S.S.: The Random Projection Method, vol. 65. American Mathematical Society (2004)Google Scholar
  127. 127.
    Widdows, D.: Orthogonal Negation in Vector Spaces for Modelling Word-Meanings and Document Retrieval. In: E.W. Hinrichs, D. Roth (eds.) Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pp. 136–143 (2003)Google Scholar
  128. 128.
    Widdows, D., Cohen, T.: The Semantic Vectors Package: New Algorithms and Public Tools for Distributional Semantics. In: Proc. of the 4th IEEE International Conference on Semantic Computing, ICSC 2010, pp. 9–15. IEEE (2010)Google Scholar
  129. 129.
    Witten, I.H., Bell, T.: The Zero-frequency Problem: Estimating the Probabilities of Novel Events in Adaptive Text Compression. IEEE Transactions on Information Theory 37(4) (1991)Google Scholar
  130. 130.
    Wu, Z., Palmer, M.S.: Verb Semantics and Lexical Selection. In: J. Pustejovsky (ed.) 32nd Annual Meeting of the Association for Computational Linguistics, pp. 133–138. Morgan Kaufmann Publishers / ACL (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marco de Gemmis
    • 1
  • Pasquale Lops
    • 1
  • Cataldo Musto
    • 1
  • Fedelucio Narducci
    • 1
  • Giovanni Semeraro
    • 1
  1. 1.Department of Computer ScienceUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations