Abbassi, Z., Mirrokni, V.S., Thakur, M.: Diversity maximization under matroid constraints. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pp. 32–40. ACM, New York, NY, USA (2013). DOI 10.1145/2487575.2487636
Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. Knowledge and Data Engineering, IEEE Transactions on 24(5), 896–911 (2012). DOI 10.1109/TKDE.2011.15
CrossRef
Google Scholar
Adomavicius, G., Tuzhilin, a.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005). DOI 10.1109/TKDE.2005.99
Amichai-Hamburger, Y., Vinitzky, G.: Social network use and personality. Computers in Human Behavior 26(6), 1289–1295 (2010)
CrossRef
Google Scholar
Aral, S., Walker, D.: Identifying influential and susceptible members of social networks. Science (New York, N.Y.) 337(6092), 337–41 (2012). DOI 10.1126/science.1215842
Augusta Silveira Netto Nunes, M., Santos Bezerra, J., Adicinéia, A.: PersonalityML: A Markup Language to Standardize the User Personality in Recommender Systems. Revista Gestão, Inovação e Tecnologia 2(3), 255–273 (2012). DOI 10.7198/S2237-0722201200030006
Bologna, C., Rosa, A.C.D., Vivo, A.D., Gaeta, M., Sansonetti, G., Viserta, V., A, Q.G.S.: Personality-Based Recommendation in E-Commerce. EMPIRE 2013: Emotions and Personality in Personalized Services (2013)
Google Scholar
Braunhofer, M., Elahi, M., Ge, M., Ricci, F.: Context Dependent Preference Acquisition with Personality-Based Active Learning in Mobile Recommender Systems. Learning and Collaboration Technologies. Technology-Rich Environments for Learning and Collaboration pp. 105–116 (2014). DOI 10.1007/978-3-319-07485-6_11
Cantador, I., Fernández-tobías, I., Bellogín, A.: Relating Personality Types with User Preferences in Multiple Entertainment Domains. EMPIRE 1st Workshop on “Emotions and Personality in Personalized Services”, 10. June 2013, Rome (2013)
Google Scholar
Chen, L., Wu, W., He, L.: How personality influences users’ needs for recommendation diversity? CHI ’13 Extended Abstracts on Human Factors in Computing Systems on - CHI EA ’13 p. 829 (2013). DOI 10.1145/2468356.2468505
Chittaranjan, G., Blom, J., Gatica-Perez, D.: Mining large-scale smartphone data for personality studies. Personal and Ubiquitous Computing 17(3), 433–450 (2011). DOI 10.1007/s00779-011-0490-1
CrossRef
Google Scholar
Costa, P.T., Mccrae, R.R.: NEO PI-R professional manual. Odessa, FL (1992)
Google Scholar
Deniz, M.: An Investigation of Decision Making Styles and the Five-Factor Personality Traits with Respect to Attachment Styles. Educational Sciences: Theory and Practice 11(1), 105–114 (2011)
Google Scholar
Dennis, M., Masthoff, J., Mellish, C.: The quest for validated personality trait stories. In: Proceedings of the 2012 ACM international conference on Intelligent User Interfaces - IUI ’12, p. 273. ACM Press, New York, New York, USA (2012). DOI 10.1145/2166966.2167016
DeYoung, C.G., Quilty, L.C., Peterson, J.B.: Between facets and domains: 10 aspects of the Big Five. Journal of personality and social psychology 93(5), 880–896 (2007). DOI 10.1037/0022-3514.93.5.880
CrossRef
Google Scholar
Dunn, G., Wiersema, J., Ham, J., Aroyo, L.: Evaluating interface variants on personality acquisition for recommender systems. User Modeling, Adaptation, and Personalization pp. 259–270 (2009). DOI 10.1007/978-3-642-02247-0_25
El-Bishouty, M.M., Chang, T.W., Graf, S., Chen, N.S.: Smart e-course recommender based on learning styles. Journal of Computers in Education 1(1), 99–111 (2014). DOI 10.1007/s40692-014-0003-0
CrossRef
Google Scholar
Elahi, M., Braunhofer, M., Ricci, F., Tkalcic, M.: Personality-based active learning for collaborative filtering recommender systems. AI*IA 2013: Advances in Artificial Intelligence pp. 360–371 (2013). DOI 10.1007/978-3-319-03524-6_31
Elahi, M., Repsys, V., Ricci, F.: Rating elicitation strategies for collaborative filtering. E-Commerce and Web Technologies pp. 160–171 (2011)
Google Scholar
Felder, R., Silverman, L.: Learning and teaching styles in engineering education. Engineering education 78(June), 674–681 (1988)
Google Scholar
Gao, R., Hao, B., Bai, S., Li, L., Li, A., Zhu, T.: Improving user profile with personality traits predicted from social media content. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13, pp. 355–358. ACM, New York, NY, USA (2013). DOI 10.1145/2507157.2507219
Golbeck, J., Robles, C., Turner, K.: Predicting personality with social media. Proceedings of the 2011 annual conference extended abstracts on Human factors in computing systems - CHI EA ’11 p. 253 (2011). DOI 10.1145/1979742.1979614
Goldberg, L., Johnson, J., Eber, H., Hogan, R., Ashton, M., Cloninger, C., Gough, H.: The international personality item pool and the future of public-domain personality measures. Journal of Research in Personality 40(1), 84–96 (2006). DOI 10.1016/j.jrp.2005.08.007
CrossRef
Google Scholar
Goldberg, L.R.: The Development of Markers for the Big-Five Factor Structure. Psychological assessment 4(1), 26–42 (1992)
CrossRef
Google Scholar
Gosling, S.D., Rentfrow, P.J., Swann, W.B.: A very brief measure of the Big-Five personality domains. Journal of Research in Personality 37(6), 504–528 (2003). DOI 10.1016/S0092-6566(03)00046-1
CrossRef
Google Scholar
Hellriegel Don, Slocum, J.: Organizational Behavior. Cengage Learning (2010)
Google Scholar
Holland, J.L.: Making vocational choices: A theory of vocational personalities and work environments. Psychological Assessment Resources (1997)
Google Scholar
Hu, R., Pu, P.: A Study on User Perception of Personality-Based Recommender Systems. User Modeling, Adaptation, and Personalization 6075, 291–302 (2010). DOI 10.1007/978-3-642-13470-8_27
CrossRef
Google Scholar
Hu, R., Pu, P.: Using Personality Information in Collaborative Filtering for New Users. Recommender Systems and the Social Web p. 17 (2010)
Google Scholar
Hu, R., Pu, P.: Exploring Relations between Personality and User Rating Behaviors. EMPIRE 1st Workshop on “Emotions and Personality in Personalized Services”, 10. June 2013, Rome (2013)
Google Scholar
Hurley, N., Zhang, M.: Novelty and diversity in top-n recommendation – analysis and evaluation. ACM Trans. Internet Technol. 10(4), 14:1–14:30 (2011). DOI 10.1145/1944339.1944341
Iacobelli, F., Gill, A.J., Nowson, S., Oberlander, J.: Large Scale Personality Classification of Bloggers. In: S. DMello, A. Graesser, B. Schuller, J.C. Martin (eds.) Affective Computing and Intelligent Interaction, Lecture Notes in Computer Science, vol. 6975, pp. 568–577. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). DOI 10.1007/978-3-642-24571-8
CrossRef
Google Scholar
John, O.P., Srivastava, S.: The Big Five trait taxonomy: History, measurement, and theoretical perspectives. In: L.A. Pervin, O.P. John (eds.) Handbook of personality: Theory and research, vol. 2, second edn., pp. 102–138. Guilford Press, New York (1999)
Google Scholar
Keirsey, D.: Please Understand Me 2? Prometheus Nemesis pp. 1–350 (1998)
Google Scholar
Kompan, M., Bieliková, M.: Social Structure and Personality Enhanced Group Recommendation. UMAP 2014 Extended Proceedings (2014)
Google Scholar
Koren, Y., Bell, R., Volinsky, C.: Matrix Factorization Techniques for Recommender Systems. Computer 42(8), 30–37 (2009). DOI 10.1109/MC.2009.263
CrossRef
Google Scholar
Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences pp. 2–5 (2013). DOI 10.1073/pnas.1218772110
Košir, A., Odić, A., Kunaver, M., Tkalčič, M., Tasič, J.F.: Database for contextual personalization. Elektrotehniški vestnik 78(5), 270–274 (2011)
Google Scholar
Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. Tech. rep., University of Florida (2005)
Google Scholar
van Lankveld, G., Spronck, P., van den Herik, J., Arntz, A.: Games as personality profiling tools. 2011 IEEE Conference on Computational Intelligence and Games (CIG’11) pp. 197–202 (2011). DOI 10.1109/CIG.2011.6032007
Masthoff, J., Gatt, A.: In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender systems. User Modeling and User-Adapted Interaction: The Journal of Personalization Research 16(3-4), 281–319 (2006). DOI 10.1007/s11257-006-9008-3
CrossRef
Google Scholar
McCrae, R., Allik, I.: The five-factor model of personality across cultures. Springer (2002)
Google Scholar
McCrae, R.R., Costa, P.T.: A contemplated revision of the NEO Five-Factor Inventory. Personality and Individual Differences 36(3), 587–596 (2004). DOI 10.1016/S0191-8869(03)00118-1
CrossRef
Google Scholar
McCrae, R.R., John, O.P.: An Introduction to the Five-Factor Model and its Applications. Journal of Personality 60(2), p175–215 (1992)
CrossRef
Google Scholar
McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough. In: CHI ’06 extended abstracts on Human factors in computing systems - CHI EA ’06, p. 1097. ACM Press, New York, New York, USA (2006). DOI 10.1145/1125451.1125659
McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: How accuracy metrics have hurt recommender systems. In: CHI ’06 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’06, pp. 1097–1101. ACM, New York, NY, USA (2006). DOI 10.1145/1125451.1125659
Nowson, S., Oberlander, J.: Identifying more bloggers: Towards large scale personality classification of personal weblogs. International Conference on Weblogs and Social Media. (2007)
Google Scholar
Nunes, M.A.S., Hu, R.: Personality-based recommender systems. In: Proceedings of the sixth ACM conference on Recommender systems - RecSys ’12, p. 5. ACM Press, New York, New York, USA (2012). DOI 10.1145/2365952.2365957
Nunes, M.A.S.N.: Recommender Systems based on Personality Traits: Could human psychological aspects influence the computer decision-making process? VDM Verlag (2009)
Google Scholar
Odić, A., Tkalčič, M., Tasic, J.F., Košir, A.: Predicting and Detecting the Relevant Contextual Information in a Movie-Recommender System. Interacting with Computers 25(1), 74–90 (2013). DOI 10.1093/iwc/iws003
Google Scholar
Odić, A., Tkalčič, M., Tasič, J.F., Košir, A.: Personality and Social Context: Impact on Emotion Induction from Movies. UMAP 2013 Extended Proceedings (2013)
Google Scholar
Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count: Liwc 2001. Mahway: Lawrence Erlbaum Associates p. 71 (2001)
Google Scholar
Quercia, D., Kosinski, M., Stillwell, D., Crowcroft, J.: Our Twitter Profiles, Our Selves: Predicting Personality with Twitter. In: 2011 IEEE Third Int’l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int’l Conference on Social Computing, pp. 180–185. IEEE (2011). DOI 10.1109/PASSAT/SocialCom.2011.26
Quijano-Sanchez, L., Recio-Garcia, J.a., Diaz-Agudo, B.: Personality and Social Trust in Group Recommendations. 2010 22nd IEEE International Conference on Tools with Artificial Intelligence (c), 121–126 (2010). DOI 10.1109/ICTAI.2010.92
Rawlings, D., Ciancarelli, V.: Music Preference and the Five-Factor Model of the NEO Personality Inventory. Psychology of Music 25(2), 120–132 (1997). DOI 10.1177/0305735697252003
CrossRef
Google Scholar
Recio-Garcia, J.A., Jimenez-Diaz, G., Sanchez-Ruiz, A.A., Diaz-Agudo, B.: Personality aware recommendations to groups. In: Proceedings of the third ACM conference on Recommender systems - RecSys ’09, p. 325. ACM Press, New York, New York, USA (2009). DOI 10.1145/1639714.1639779
Rentfrow, P.J., Goldberg, L.R., Zilca, R.: Listening, watching, and reading: the structure and correlates of entertainment preferences. Journal of personality 79(2), 223–58 (2011). DOI 10.1111/j.1467-6494.2010.00662.x
CrossRef
Google Scholar
Rentfrow, P.J., Gosling, S.D.: The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology 84(6), 1236–1256 (2003). DOI 10.1037/0022-3514.84.6.1236
CrossRef
Google Scholar
Ross, C., Orr, E.S., Sisic, M., Arseneault, J.M., Simmering, M.G., Orr, R.R.: Personality and motivations associated with facebook use. Computers in Human Behavior 25(2), 578–586 (2009)
CrossRef
Google Scholar
Schrammel, J., Köffel, C., Tscheligi, M.: Personality traits, usage patterns and information disclosure in online communities. Proceedings of the 23rd British HCI …pp. 169–174 (2009)
Google Scholar
Selfhout, M., Burk, W., Branje, S., Denissen, J., van Aken, M., Meeus, W.: Emerging late adolescent friendship networks and Big Five personality traits: a social network approach. Journal of personality 78(2), 509–38 (2010). DOI 10.1111/j.1467-6494.2010.00625.x
CrossRef
Google Scholar
Sha, X., Quercia, D., Michiardi, P., Dell’Amico, M.: Spotting trends. In: Proceedings of the sixth ACM conference on Recommender systems - RecSys ’12, p. 51. ACM Press, New York, New York, USA (2012). DOI 10.1145/2365952.2365967
Shen, J., Brdiczka, O., Liu, J.: Understanding Email Writers: Personality Prediction from Email Messages. User Modeling, Adaptation, and Personalization pp. 318–330 (2013). DOI 10.1007/978-3-642-38844-6_29
Soloman, B.A., Felder, R.M.: Index of Learning Styles Questionnaire (2014). URL http://www.engr.ncsu.edu/learningstyles/ilsweb.html
Stewart, B.: Personality And Play Styles: A Unified Model (2011)
Google Scholar
Thomas, K.W.: Conflict and conflict management: Reflections and update. Journal of Organizational Behavior 13(3), 265–274 (1992). DOI 10.1002/job.4030130307
CrossRef
Google Scholar
Tintarev, N., Dennis, M., Masthoff, J.: Adapting Recommendation Diversity to Openness to Experience: A Study of Human Behaviour. User Modeling, Adaptation, and Personalization, Lecture Notes in Computer Science Volume 7899 (I), 190–202 (2013). DOI 10.1007/978-3-642-38844-6_16
CrossRef
Google Scholar
Tiroshi, A., Kuflik, T.: Domain ranking for cross domain collaborative filtering. User Modeling, Adaptation, and Personalization pp. 328–333 (2012). DOI 10.1007/978-3-642-31454-4_30
Tkalcic, M., Kunaver, M., Košir, A., Tasic, J.: Addressing the new user problem with a personality based user similarity measure. Joint Proceedings of the Workshop on Decision Making and Recommendation Acceptance Issues in Recommender Systems (DEMRA 2011) and the 2nd Workshop on User Models for Motivational Systems: The affective and the rational routes to persuasion (UMMS 2011) (2011)
Google Scholar
Tkalčič, M., Burnik, U., Košir, A.: Using affective parameters in a content-based recommender system for images. User Modeling and User-Adapted Interaction 20(4), 279–311 (2010). DOI 10.1007/s11257-010-9079-z
CrossRef
Google Scholar
Tkalčič, M., Košir, A., Tasič, J.: The LDOS-PerAff-1 corpus of facial-expression video clips with affective, personality and user-interaction metadata. Journal on Multimodal User Interfaces 7(1-2), 143–155 (2013). DOI 10.1007/s12193-012-0107-7
CrossRef
Google Scholar
Tkalčič, M., Kunaver, M., Tasič, J., Košir, A.: Personality Based User Similarity Measure for a Collaborative Recommender System. 5th Workshop on Emotion in Human-Computer Interaction-Real World Challenges p. 30 (2009)
Google Scholar
Winoto, P., Tang, T.: If You Like the Devil Wears Prada the Book, Will You also Enjoy the Devil Wears Prada the Movie? A Study of Cross-Domain Recommendations. New Generation Computing 26(3), 209–225 (2008). DOI 10.1007/s00354-008-0041-0
CrossRef
Google Scholar
Wu, W., Chen, L., He, L.: Using personality to adjust diversity in recommender systems. Proceedings of the 24th ACM Conference on Hypertext and Social Media - HT ’13 (May), 225–229 (2013). DOI 10.1145/2481492.2481521
Ziegler, C.N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, WWW ’05, pp. 22–32. ACM, New York, NY, USA (2005). DOI 10.1145/1060745.1060754