A Comprehensive Survey of Neighborhood-Based Recommendation Methods

Abstract

Among collaborative recommendation approaches, methods based on nearest-neighbors still enjoy a huge amount of popularity, due to their simplicity, their efficiency, and their ability to produce accurate and personalized recommendations. This chapter presents a comprehensive survey of neighborhood-based methods for the item recommendation problem. In particular, the main benefits of such methods, as well as their principal characteristics, are described. Furthermore, this document addresses the essential decisions that are required while implementing a neighborhood-based recommender system, and gives practical information on how to make such decisions. Finally, the problems of sparsity and limited coverage, often observed in large commercial recommender systems, are discussed, and some solutions to overcome these problems are presented.

References

  1. 1.
    Adams, R.P., Dahl, G.E., Murray, I.: Incorporating side information into probabilistic matrix factorization using Gaussian processes. In: P. Grünwald, P. Spirtes (eds.) Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pp. 1–9 (2010)Google Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. 3.
    Agarwal, D., Chen, B.C., Long, B.: Localized factor models for multi-context recommendation. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’11, pp. 609–617. ACM, New York, NY, USA (2011). DOI http://doi.acm.org/10.1145/2020408.2020504. URL http://doi.acm.org/10.1145/2020408.2020504
  4. 4.
    Balabanović, M., Shoham, Y.: Fab: Content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  5. 5.
    Baltrunas, L., Ricci, F.: Item weighting techniques for collaborative filtering. In: Knowledge Discovery Enhanced with Semantic and Social Information, pp. 109–126. Springer (2009)Google Scholar
  6. 6.
    Bell, R., Koren, Y., Volinsky, C.: Modeling relationships at multiple scales to improve accuracy of large recommender systems. In: KDD ’07: Proc. of the 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 95–104. ACM, New York, NY, USA (2007)Google Scholar
  7. 7.
    Billsus, D., Pazzani, M.J.: Learning collaborative information filters. In: ICML ’98: Proc. of the 15th Int. Conf. on Machine Learning, pp. 46–54. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)Google Scholar
  8. 8.
    Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Modeling and User-Adapted Interaction 10(2–3), 147–180 (2000)CrossRefGoogle Scholar
  9. 9.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)MATHGoogle Scholar
  10. 10.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proc. of the 14th Annual Conf. on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann (1998)Google Scholar
  11. 11.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  12. 12.
    Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In: NIPS ’97: Proc. of the 1997 Conf. on Advances in Neural Information Processing Systems, pp. 451–457. MIT Press, Cambridge, MA, USA (1998)Google Scholar
  13. 13.
    Degemmis, M., Lops, P., Semeraro, G.: A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation. User Modeling and User-Adapted Interaction 17(3), 217–255 (2007)CrossRefGoogle Scholar
  14. 14.
    Delgado, J., Ishii, N.: Memory-based weighted majority prediction for recommender systems. In: Proc. of the ACM SIGIR’99 Workshop on Recommender Systems (1999)Google Scholar
  15. 15.
    Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Transaction on Information Systems 22(1), 143–177 (2004)CrossRefGoogle Scholar
  16. 16.
    Fouss, F., Renders, J.M., Pirotte, A., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering 19(3), 355–369 (2007)CrossRefGoogle Scholar
  17. 17.
    Fouss, F., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of graph kernels on a collaborative recommendation task. In: ICDM ’06: Proc. of the 6th Int. Conf. on Data Mining, pp. 863–868. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  18. 18.
    Freund, Y., Iyer, R.D., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. In: ICML ’98: Proc. of the 15th Int. Conf. on Machine Learning, pp. 170–178. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)Google Scholar
  19. 19.
    Gobel, F., Jagers, A.: Random walks on graphs. Stochastic Processes and Their Applications 2, 311–336 (1974)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval 4(2), 133–151 (2001)MATHCrossRefGoogle Scholar
  21. 21.
    Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining collaborative filtering with personal agents for better recommendations. In: AAAI ’99/IAAI ’99: Proc. of the 16th National Conf. on Artificial Intelligence, pp. 439–446. American Association for Artificial Intelligence, Menlo Park, CA, USA (1999)Google Scholar
  22. 22.
    Gori, M., Pucci, A.: Itemrank: a random-walk based scoring algorithm for recommender engines. In: Proc. of the 2007 IJCAI Conf., pp. 2766–2771 (2007)Google Scholar
  23. 23.
    Grcar, M., Fortuna, B., Mladenic, D., Grobelnik, M.: k-NN versus SVM in the collaborative filtering framework. Data Science and Classification pp. 251–260 (2006). URL http://db.cs.ualberta.ca/webkdd05/proc/paper25-mladenic.pdf
  24. 24.
    Herlocker, J., Konstan, J.A., Riedl, J.: An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Inf. Retr. 5(4), 287–310 (2002)CrossRefGoogle Scholar
  25. 25.
    Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: SIGIR ’99: Proc. of the 22nd Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 230–237. ACM, New York, NY, USA (1999)Google Scholar
  26. 26.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  27. 27.
    Hill, W., Stead, L., Rosenstein, M., Furnas, G.: Recommending and evaluating choices in a virtual community of use. In: CHI ’95: Proc. of the SIGCHI Conf. on Human Factors in Computing Systems, pp. 194–201. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1995)Google Scholar
  28. 28.
    Hofmann, T.: Collaborative filtering via Gaussian probabilistic latent semantic analysis. In: SIGIR ’03: Proc. of the 26th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 259–266. ACM, New York, NY, USA (2003)Google Scholar
  29. 29.
    Howe, A.E., Forbes, R.D.: Re-considering neighborhood-based collaborative filtering parameters in the context of new data. In: CIKM ’08: Proceeding of the 17th ACM conference on Information and knowledge management, pp. 1481–1482. ACM, New York, NY, USA (2008)Google Scholar
  30. 30.
    Huang, Z., Chen, H., Zeng, D.: Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems 22(1), 116–142 (2004)CrossRefGoogle Scholar
  31. 31.
    Jin, R., Chai, J.Y., Si, L.: An automatic weighting scheme for collaborative filtering. In: SIGIR ’04: Proc. of the 27th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 337–344. ACM, New York, NY, USA (2004)Google Scholar
  32. 32.
    Jin, R., Si, L., Zhai, C.: Preference-based graphic models for collaborative filtering. In: Proc. of the 19th Annual Conf. on Uncertainty in Artificial Intelligence (UAI-03), pp. 329–33. Morgan Kaufmann, San Francisco, CA (2003)Google Scholar
  33. 33.
    Jin, R., Si, L., Zhai, C., Callan, J.: Collaborative filtering with decoupled models for preferences and ratings. In: CIKM ’03: Proc. of the 12th Int. Conf. on Information and Knowledge Management, pp. 309–316. ACM, New York, NY, USA (2003)Google Scholar
  34. 34.
    Kabbur, S., Ning, X., Karypis, G.: Fism: factored item similarity models for top-n recommender systems. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’13, pp. 659–667. ACM, New York, NY, USA (2013). DOI 10.1145/2487575.2487589. URL http://doi.acm.org/10.1145/2487575.2487589
  35. 35.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)MATHCrossRefGoogle Scholar
  36. 36.
    Kendall, M., Gibbons, J.D.: Rank Correlation Methods, 5 edn. Charles Griffin (1990)Google Scholar
  37. 37.
    Koenigstein, N., Koren, Y.: Towards scalable and accurate item-oriented recommendations. In: Proceedings of the 7th ACM conference on Recommender systems, RecSys ’13, pp. 419–422. ACM, New York, NY, USA (2013). DOI 10.1145/2507157.2507208. URL http://doi.acm.org/10.1145/2507157.2507208
  38. 38.
    Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input spaces. In: ICML ’02: Proc. of the Nineteenth Int. Conf. on Machine Learning, pp. 315–322. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2002)Google Scholar
  39. 39.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: applying collaborative filtering to usenet news. Communications of the ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  40. 40.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD’08: Proceeding of the 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 426–434. ACM, New York, NY, USA (2008)Google Scholar
  41. 41.
    Kunegis, J., Lommatzsch, A., Bauckhage, C.: Alternative similarity functions for graph kernels. In: Proc. of the Int. Conf. on Pattern Recognition (2008)CrossRefGoogle Scholar
  42. 42.
    Lang, K.: News Weeder: Learning to filter netnews. In: Proc. of the 12th Int. Conf. on Machine Learning, pp. 331–339. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA (1995)Google Scholar
  43. 43.
    Li, J., Zaiane, O.R.: Combining usage, content, and structure data to improve Web site recommendation. In: Proc. of the 5th Int. Conf. on Electronic Commerce and Web Technologies (EC-Web) (2004)Google Scholar
  44. 44.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)Google Scholar
  45. 45.
    Luo, H., Niu, C., Shen, R., Ullrich, C.: A collaborative filtering framework based on both local user similarity and global user similarity. Machine Learning 72(3), 231–245 (2008)CrossRefGoogle Scholar
  46. 46.
    Ma, H., King, I., Lyu, M.R.: Effective missing data prediction for collaborative filtering. In: SIGIR ’07: Proc. of the 30th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 39–46. ACM, New York, NY, USA (2007)Google Scholar
  47. 47.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved recommendations. In: 18th National Conf. on Artificial intelligence, pp. 187–192. American Association for Artificial Intelligence, Menlo Park, CA, USA (2002)Google Scholar
  48. 48.
    Nakamura, A., Abe, N.: Collaborative filtering using weighted majority prediction algorithms. In: ICML ’98: Proc. of the 15th Int. Conf. on Machine Learning, pp. 395–403. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)Google Scholar
  49. 49.
    Natarajan, N., Shin, D., Dhillon, I.S.: Which app will you use next?: collaborative filtering with interactional context. In: Proceedings of the 7th ACM conference on Recommender systems, RecSys ’13, pp. 201–208. ACM, New York, NY, USA (2013). DOI 10.1145/2507157.2507186. URL http://doi.acm.org/10.1145/2507157.2507186
  50. 50.
    Ning, X., Karypis, G.: Slim: Sparse linear methods for top-n recommender systems. In: Proceedings of 11th IEEE International Conference on Data Mining, pp. 497–506 (2011)Google Scholar
  51. 51.
    Ning, X., Karypis, G.: Sparse linear methods with side information for top-n recommendations. In: Proceedings of the sixth ACM conference on Recommender systems, RecSys ’12, pp. 155–162. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2365983. URL http://doi.acm.org/10.1145/2365952.2365983
  52. 52.
    Norris, J.R.: Markov Chains, 1 edn. Cambridge University Press, Cambridge (1999)Google Scholar
  53. 53.
    Paterek, A.: Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of the KDD Cup and Workshop (2007)Google Scholar
  54. 54.
    Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting Web sites. Machine Learning 27(3), 313–331 (1997)CrossRefGoogle Scholar
  55. 55.
    Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review 13(5–6), 393–408 (1999)CrossRefGoogle Scholar
  56. 56.
    Rendle, S., Freudenthaler, C., Gantner, Z., Lars, S.T.: Bpr: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, pp. 452–461. AUAI Press, Arlington, Virginia, United States (2009)Google Scholar
  57. 57.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: CSCW ’94: Proc. of the 1994 ACM Conf. on Computer Supported Cooperative Work, pp. 175–186. ACM, New York, NY, USA (1994)Google Scholar
  58. 58.
    Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: ICML ’07: Proceedings of the 24th international conference on Machine learning, pp. 791–798. ACM, New York, NY, USA (2007)Google Scholar
  59. 59.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW ’01: Proc. of the 10th Int. Conf. on World Wide Web, pp. 285–295. ACM, New York, NY, USA (2001)Google Scholar
  60. 60.
    Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Application of dimensionality reduction in recommender systems – A case study. In: ACM WebKDD Workshop (2000)Google Scholar
  61. 61.
    Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system. In: CSCW ’98: Proc. of the 1998 ACM Conf. on Computer Supported Cooperative Work, pp. 345–354. ACM, New York, NY, USA (1998)Google Scholar
  62. 62.
    Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: SIGIR ’02: Proc. of the 25th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 253–260. ACM, New York, NY, USA (2002)Google Scholar
  63. 63.
    Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating “word of mouth”. In: CHI ’95: Proc. of the SIGCHI Conf. on Human factors in Computing Systems, pp. 210–217. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1995)Google Scholar
  64. 64.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on 22(8), 888–905 (2000)CrossRefGoogle Scholar
  65. 65.
    Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: Proceeding of the 14th ACM International Conference on Knowledge Discovery and Data Mining, pp. 650–658 (2008). DOI http://doi.acm.org/10.1145/1401890.1401969. URL http://doi.acm.org/10.1145/1401890.1401969
  66. 66.
    Soboroff, I.M., Nicholas, C.K.: Combining content and collaboration in text filtering. In: Proc. of the IJCAI’99 Workshop on Machine Learning for Information Filtering, pp. 86–91 (1999)Google Scholar
  67. 67.
    Takács, G., Pilászy, I., Németh, B., Tikk, D.: Major components of the gravity recommendation system. SIGKDD Exploration Newsletter 9(2), 80–83 (2007)CrossRefGoogle Scholar
  68. 68.
    Takács, G., Pilászy, I., Németh, B., Tikk, D.: Investigation of various matrix factorization methods for large recommender systems. In: Proc. of the 2nd KDD Workshop on Large Scale Recommender Systems and the Netflix Prize Competition (2008)Google Scholar
  69. 69.
    Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. Journal of Machine Learning Research (Special Topic on Mining and Learning with Graphs and Relations) 10, 623–656 (2009)Google Scholar
  70. 70.
    Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: PHOAKS: a system for sharing recommendations. Communications of the ACM 40(3), 59–62 (1997)CrossRefGoogle Scholar
  71. 71.
    Yoo, J., Choi, S.: Weighted nonnegative matrix co-tri-factorization for collaborative prediction. In: Z.H. Zhou, T. Washio (eds.) Advances in Machine Learning, Lecture Notes in Computer Science, vol. 5828, pp. 396–411. Springer Berlin / Heidelberg (2009)Google Scholar
  72. 72.
    Zitnick, C.L., Kanade, T.: Maximum entropy for collaborative filtering. In: AUAI ’04: Proc. of the 20th Conf. on Uncertainty in Artificial Intelligence, pp. 636–643. AUAI Press, Arlington, Virginia, United States (2004)Google Scholar
  73. 73.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal Of The Royal Statistical Society Series B 67(2), 301–320 (2005)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xia Ning
    • 1
  • Christian Desrosiers
    • 2
  • George Karypis
    • 3
  1. 1.Computer Science DepartmentPurdue UniversityWest LafayetteUSA
  2. 2.Software Engineering and IT DepartmentÉcole de Technologie SupérieureMontrealCanada
  3. 3.Computer Science and Engineering DepartmentUniversity of MinnesotaMinneapolisUSA

Personalised recommendations