Abstract

Recommender systems play an increasingly important role in the success of social media websites. Higher portions of social websites’ traffic are triggered by recommendations and those sites rely on the quality of the recommendations to attract new users and retain existing ones. In this chapter, we introduce the notion of social recommender systems as recommender systems that target the social media domain. After a short introduction, we discuss in detail two of the most prominent types of social recommender systems—recommendation of social media content and recommendation of people. We describe the main approaches and state-of-the-art techniques for each of the recommendation types. We also review related work from the recent years that studied such recommender systems, in order to demonstrate the different use cases and methods applied to take advantage of the unique data. We conclude by summarizing the key aspects, emerging domains, and open challenges for social recommender systems.

References

  1. 1.
    Alonso, O., Mizzaro, S.: Can we get rid of TREC assessors? Using Mechanical Turk for relevance assessment. In: Proceedings of the SIGIR 2009 Workshop on the Future of IR Evaluation, vol. 15, p. 16 (2009)Google Scholar
  2. 2.
    Arguello, J., Elsas, J.L., Callan, J., Carbonell, J.G.: Document Representation and Query Expansion Models for Blog Recommendation. Proceedings of the second AAAI conference on Weblogs and Social Media - ICWSM ’08 (2008)Google Scholar
  3. 3.
    Baltrunas, L., Makcinskas, T., Ricci, F.: Group Recommendations with Rank Aggregation and Collaborative Filtering. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 119–126. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864733. URL http://doi.acm.org/10.1145/1864708.1864733
  4. 4.
    Belluf, T., Xavier, L., Giglio, R.: Case study on the business value impact of personalized recommendations on a large online retailer. In: Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys ’12, pp. 277–280. ACM, New York, NY, USA (2012). DOI 10.1145/2365952.2366014. URL http://doi.acm.org/10.1145/2365952.2366014
  5. 5.
    Bennett, J., Lanning, S.: The Netflix Prize. In: Proceedings of KDD cup and workshop, vol. 2007, p. 35 (2007)Google Scholar
  6. 6.
    Berkovsky, S., Freyne, J.: Group-based Recipe Recommendations: Analysis of Data Aggregation Strategies. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 111–118. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864732. URL http://doi.acm.org/10.1145/1864708.1864732
  7. 7.
    Boyd, D.M., Ellison, N.B.: Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication (2007)Google Scholar
  8. 8.
    Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25(2), 163–177 (2001)MATHCrossRefGoogle Scholar
  9. 9.
    Brzozowski, M.J., Romero, D.M.: Who Should I Follow? Recommending People in Directed Social Networks. In: ICWSM (2011)Google Scholar
  10. 10.
    Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon’s Mechanical Turk a New Source of Inexpensive, yet High-Quality, Data? Perspectives on Psychological Science 6(1), 3–5 (2011)CrossRefGoogle Scholar
  11. 11.
    Chen, J., Geyer, W., Dugan, C., Muller, M., Guy, I.: Make New Friends, but Keep the Old: Recommending People on Social Networking Sites. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pp. 201–210. ACM, New York, NY, USA (2009). DOI 10.1145/1518701.1518735. URL http://doi.acm.org/10.1145/1518701.1518735
  12. 12.
    Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and Tweet: Experiments on Recommending Content from Information Streams. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pp. 1185–1194. ACM, New York, NY, USA (2010). DOI 10.1145/1753326.1753503. URL http://doi.acm.org/10.1145/1753326.1753503
  13. 13.
    Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E., Yu, Y.: Collaborative Personalized Tweet Recommendation. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pp. 661–670. ACM, New York, NY, USA (2012). DOI 10.1145/2348283.2348372. URL http://doi.acm.org/10.1145/2348283.2348372
  14. 14.
    Cosley, D., Frankowski, D., Terveen, L., Riedl, J.: SuggestBot: Using Intelligent Task Routing to Help People Find Work in Wikipedia. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, IUI ’07, pp. 32–41. ACM, New York, NY, USA (2007). DOI 10.1145/1216295.1216309. URL http://doi.acm.org/10.1145/1216295.1216309
  15. 15.
    Daly, E.M., Geyer, W., Millen, D.R.: The Network Effects of Recommending Social Connections. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 301–304. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864772. URL http://doi.acm.org/10.1145/1864708.1864772
  16. 16.
    Davidson, J., Livingston, B., Sampath, D., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., et al.: The YouTube Video Recommendation System. Proceedings of the fourth ACM conference on Recommender systems - RecSys ’10 pp. 293–296 (2010). DOI 10.1145/1864708.1864770. URL http://dx.doi.org/10.1145/1864708.1864770
  17. 17.
    Dugan, C., Geyer, W., Millen, D.R.: Lessons Learned from Blog Muse: Audience-based Inspiration for Bloggers. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, pp. 1965–1974. ACM, New York, NY, USA (2010). DOI 10.1145/1753326.1753623. URL http://doi.acm.org/10.1145/1753326.1753623
  18. 18.
    Dwyer, C.: Privacy in the age of Google and Facebook. Technology and Society Magazine, IEEE 30(3), 58–63 (2011)CrossRefGoogle Scholar
  19. 19.
    Fire, M., Tenenboim, L., Lesser, O., Puzis, R., Rokach, L., Elovici, Y.: Link Prediction in Social Networks using Computationally Efficient Topological Features. In: Privacy, security, risk and trust (passat), 2011 ieee third international conference on and 2011 ieee third international conference on social computing (socialcom), pp. 73–80. IEEE (2011)Google Scholar
  20. 20.
    Fogg, B.: A Behavior Model for Persuasive Design. In: Proceedings of the 4th International Conference on Persuasive Technology, Persuasive ’09, pp. 40:1–40:7. ACM, New York, NY, USA (2009). DOI 10.1145/1541948.1541999. URL http://doi.acm.org/10.1145/1541948.1541999
  21. 21.
    Freyne, J., Berkovsky, S., Daly, E.M., Geyer, W.: Social Networking Feeds: Recommending Items of Interest. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 277–280. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864766. URL http://doi.acm.org/10.1145/1864708.1864766
  22. 22.
    Freyne, J., Jacovi, M., Guy, I., Geyer, W.: Increasing Engagement Through Early Recommender Intervention. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys ’09, pp. 85–92. ACM, New York, NY, USA (2009). DOI 10.1145/1639714.1639730. URL http://doi.acm.org/10.1145/1639714.1639730
  23. 23.
    Garcia Esparza, S., O’Mahony, M.P., Smyth, B.: On the Real-time Web As a Source of Recommendation Knowledge. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 305–308. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864773. URL http://doi.acm.org/10.1145/1864708.1864773
  24. 24.
    Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy: Evaluating recommender systems by coverage and serendipity. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 257–260. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864761. URL http://doi.acm.org/10.1145/1864708.1864761
  25. 25.
    Geyer, W., Dugan, C., Millen, D.R., Muller, M., Freyne, J.: Recommending Topics for Self-descriptions in Online User Profiles. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys ’08, pp. 59–66. ACM, New York, NY, USA (2008). DOI 10.1145/1454008.1454019. URL http://doi.acm.org/10.1145/1454008.1454019
  26. 26.
    Golbeck, J.: Generating predictive movie recommendations from trust in social networks. In: Proceedings of the 4th International Conference on Trust Management, iTrust’06, pp. 93–104. Springer-Verlag, Berlin, Heidelberg (2006). DOI 10.1007/11755593_8. URL http://dx.doi.org/10.1007/11755593_8
  27. 27.
    Golbeck, J.A.: Computing and Applying Trust in Web-based Social Networks. Ph.D. thesis, College Park, MD, USA (2005). AAI3178583Google Scholar
  28. 28.
    Groh, G., Ehmig, C.: Recommendations in Taste Related Domains. Proceedings of the 2007 international ACM conference on Conference on supporting group work - GROUP ’07 pp. 127–136 (2007). DOI 10.1145/1316624.1316643. URL http://dx.doi.org/10.1145/1316624.1316643
  29. 29.
    Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: WTF: The Who to Follow Service at Twitter. In: Proceedings of the 22Nd International Conference on World Wide Web, WWW ’13, pp. 505–514. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013). URL http://dl.acm.org/citation.cfm?id=2488388.2488433
  30. 30.
    Guy, I., Avraham, U., Carmel, D., Ur, S., Jacovi, M., Ronen, I.: Mining Expertise and Interests from Social Media. In: Proceedings of the 22Nd International Conference on World Wide Web, WWW ’13, pp. 515–526. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013). URL http://dl.acm.org/citation.cfm?id=2488388.2488434
  31. 31.
    Guy, I., Carmel, D.: Social Recommender Systems. Proceedings of the 20th international conference companion on World wide web - WWW ’11 pp. 283––284 (2011). DOI 10.1145/1963192.1963312. URL http://dx.doi.org/10.1145/1963192.1963312
  32. 32.
    Guy, I., Ronen, I., Raviv, A.: Personalized Activity Streams: Sifting Through the River of News. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pp. 181–188. ACM, New York, NY, USA (2011). DOI 10.1145/2043932.2043966. URL http://doi.acm.org/10.1145/2043932.2043966
  33. 33.
    Guy, I., Ronen, I., Wilcox, E.: Do You Know?: Recommending People to Invite into Your Social Network. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, IUI ’09, pp. 77–86. ACM, New York, NY, USA (2009). DOI 10.1145/1502650.1502664. URL http://doi.acm.org/10.1145/1502650.1502664
  34. 34.
    Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized Recommendation of Social Software Items Based on Social Relations. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys ’09, pp. 53–60. ACM, New York, NY, USA (2009). DOI 10.1145/1639714.1639725. URL http://doi.acm.org/10.1145/1639714.1639725
  35. 35.
    Guy, I., Zwerdling, N., Ronen, I., Carmel, D., Uziel, E.: Social Media Recommendation Based on People and Tags. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’10, pp. 194–201. ACM, New York, NY, USA (2010). DOI 10.1145/1835449.1835484. URL http://doi.acm.org/10.1145/1835449.1835484
  36. 36.
    Hannon, J., Bennett, M., Smyth, B.: Recommending Twitter Users to Follow Using Content and Collaborative Filtering Approaches. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 199–206. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864746. URL http://doi.acm.org/10.1145/1864708.1864746
  37. 37.
    Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining Collaborative Filtering Recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, CSCW ’00, pp. 241–250. ACM, New York, NY, USA (2000). DOI 10.1145/358916.358995. URL http://doi.acm.org/10.1145/358916.358995
  38. 38.
    Jacovi, M., Guy, I., Kremer-Davidson, S., Porat, S., Aizenbud-Reshef, N.: The perception of others: Inferring reputation from social media in the enterprise. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, CSCW ’14, pp. 756–766. ACM, New York, NY, USA (2014). DOI 10.1145/2531602.2531667. URL http://doi.acm.org/10.1145/2531602.2531667
  39. 39.
    Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 135–142. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864736. URL http://doi.acm.org/10.1145/1864708.1864736
  40. 40.
    Jameson, A., Baldes, S., Kleinbauer, T.: Two Methods for Enhancing Mutual Awareness in a Group Recommender System. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ’04, pp. 447–449. ACM, New York, NY, USA (2004). DOI 10.1145/989863.989948. URL http://doi.acm.org/10.1145/989863.989948
  41. 41.
    Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag Recommendations in Folksonomies. In: Knowledge Discovery in Databases: PKDD 2007, pp. 506–514. Springer (2007)Google Scholar
  42. 42.
    Kaser, O., Lemire, D.: Tag-cloud Drawing: Algorithms for Cloud Visualization. arXiv preprint cs/0703109 (2007)Google Scholar
  43. 43.
    Kautz, H., Selman, B., Shah, M.: Referral Web: Combining Social Networks and Collaborative Filtering. Commun. ACM 40(3), 63–65 (1997). DOI 10.1145/245108.245123. URL http://doi.acm.org/10.1145/245108.245123
  44. 44.
    Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing User Studies with Mechanical Turk. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’08, pp. 453–456. ACM, New York, NY, USA (2008). DOI 10.1145/1357054.1357127. URL http://doi.acm.org/10.1145/1357054.1357127
  45. 45.
    Lempel, R., Moran, S.: SALSA: The Stochastic Approach for Link-structure Analysis. ACM Trans. Inf. Syst. 19(2), 131–160 (2001). DOI 10.1145/382979.383041. URL http://doi.acm.org/10.1145/382979.383041
  46. 46.
    Lerman, K.: Social Networks and Social Information Filtering on Digg. Proceedings of the first AAAI conference on Weblogs and Social Media - ICWSM ’07 (2007)Google Scholar
  47. 47.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting Positive and Negative Links in Online Social Networks. In: Proceedings of the 19th International Conference on World Wide Web, WWW ’10, pp. 641–650. ACM, New York, NY, USA (2010). DOI 10.1145/1772690.1772756. URL http://doi.acm.org/10.1145/1772690.1772756
  48. 48.
    Liben-Nowell, D., Kleinberg, J.: The Link-Prediction Problem for Social Networks. Journal of the American society for information science and technology 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  49. 49.
    Liu, J., Dolan, P., Pedersen, E.R.: Personalized News Recommendation based on Click Behavior. Proceedings of the 15th international conference on Intelligent user interfaces - IUI ’10 pp. 31–40 (2010). DOI 10.1145/1719970.1719976. URL http://dx.doi.org/10.1145/1719970.1719976
  50. 50.
    Macdonald, C., Ounis, I.: The trec blogs06 collection: Creating and analysing a blog test collection. Department of Computer Science, University of Glasgow Tech Report TR-2006-224 1, 3–1 (2006)Google Scholar
  51. 51.
    McCarthy, J.F., Anagnost, T.D.: MusicFX: An Arbiter of Group Preferences for Computer Supported Collaborative Workouts. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, CSCW ’98, pp. 363–372. ACM, New York, NY, USA (1998). DOI 10.1145/289444.289511. URL http://doi.acm.org/10.1145/289444.289511
  52. 52.
    McDonald, D.W., Ackerman, M.S.: Just Talk to Me: A Field Study of Expertise Location. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, CSCW ’98, pp. 315–324. ACM, New York, NY, USA (1998). DOI 10.1145/289444.289506. URL http://doi.acm.org/10.1145/289444.289506
  53. 53.
    McNee, S.M., Riedl, J., Konstan, J.A.: Being Accurate is Not Enough: How Accuracy Metrics Have Hurt Recommender Systems. In: CHI ’06 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’06, pp. 1097–1101. ACM, New York, NY, USA (2006). DOI 10.1145/1125451.1125659. URL http://doi.acm.org/10.1145/1125451.1125659
  54. 54.
    o’Reilly, T.: What is Web 2.0. O’Reilly Media, Inc. (2009)Google Scholar
  55. 55.
    Paek, T., Gamon, M., Counts, S., Chickering, D.M., Dhesi, A.: Predicting the Importance of Newsfeed Posts and Social Network Friends. In: AAAI, vol. 10, pp. 1419–1424 (2010)Google Scholar
  56. 56.
    Phelan, O., McCarthy, K., Smyth, B.: Using Twitter to Recommend Real-time Topical News. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys ’09, pp. 385–388. ACM, New York, NY, USA (2009). DOI 10.1145/1639714.1639794. URL http://doi.acm.org/10.1145/1639714.1639794
  57. 57.
    Pizzato, L., Rej, T., Chung, T., Koprinska, I., Kay, J.: RECON: A Reciprocal Recommender for Online Dating. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pp. 207–214. ACM, New York, NY, USA (2010). DOI 10.1145/1864708.1864747. URL http://doi.acm.org/10.1145/1864708.1864747
  58. 58.
    Quercia, D., Capra, L.: FriendSensing: Recommending Friends using Mobile Phones. Proceedings of the third ACM conference on Recommender systems - RecSys ’09 pp. 273–276 (2009). DOI 10.1145/1639714.1639766. URL http://dx.doi.org/10.1145/1639714.1639766
  59. 59.
    Resnick, P., Varian, H.R.: Recommender Systems. Communications of the ACM 40(3), 56–58 (1997). DOI 10.1145/245108.245121. URL http://dx.doi.org/10.1145/245108.245121
  60. 60.
    Ronen, I., Guy, I., Kravi, E., Barnea, M.: Recommending Social Media Content to Community Owners. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, pp. 243–252. ACM, New York, NY, USA (2014). DOI 10.1145/2600428.2609596. URL http://doi.acm.org/10.1145/2600428.2609596
  61. 61.
    Ryan, R.M., Deci, E.L.: Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well-being. American psychologist 55(1), 68 (2000)CrossRefGoogle Scholar
  62. 62.
    Said, A., Bellogín, A.: You are What You Eat! Tracking Health Through Recipe Interactions. In: 6th RecSys Workshop on Recommender Systems and the Social Web, RSWeb ’14, p. 4 (2014)Google Scholar
  63. 63.
    Scellato, S., Noulas, A., Mascolo, C.: Exploiting Place Features in Link Prediction on Location-based Social Networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pp. 1046–1054. ACM, New York, NY, USA (2011). DOI 10.1145/2020408.2020575. URL http://doi.acm.org/10.1145/2020408.2020575
  64. 64.
    Sen, S., Vig, J., Riedl, J.: Tagommenders: Connecting users to items through tags. In: Proceedings of the 18th International Conference on World Wide Web, WWW ’09, pp. 671–680. ACM, New York, NY, USA (2009). DOI 10.1145/1526709.1526800. URL http://doi.acm.org/10.1145/1526709.1526800
  65. 65.
    Sigurbjörnsson, B., van Zwol, R.: Flickr Tag Recommendation Based on Collective Knowledge. In: Proceedings of the 17th International Conference on World Wide Web, WWW ’08, pp. 327–336. ACM, New York, NY, USA (2008). DOI 10.1145/1367497.1367542. URL http://doi.acm.org/10.1145/1367497.1367542
  66. 66.
    Sinha, R.R., Swearingen, K.: Comparing Recommendations Made by Online Systems and Friends. In: DELOS workshop: personalisation and recommender systems in digital libraries, vol. 106 (2001)Google Scholar
  67. 67.
    Szpektor, I., Maarek, Y., Pelleg, D.: When Relevance is Not Enough: Promoting Diversity and Freshness in Personalized Question Recommendation. In: Proceedings of the 22Nd International Conference on World Wide Web, WWW ’13, pp. 1249–1260. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013). URL http://dl.acm.org/citation.cfm?id=2488388.2488497
  68. 68.
    Terveen, L., McDonald, D.W.: Social Matching: A Framework and Research Agenda. ACM Trans. Comput.-Hum. Interact. 12(3), 401–434 (2005). DOI 10.1145/1096737.1096740. URL http://doi.acm.org/10.1145/1096737.1096740
  69. 69.
    Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.L.: Human Mobility, Social Ties, and Link Prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pp. 1100–1108. ACM, New York, NY, USA (2011). DOI 10.1145/2020408.2020581. URL http://doi.acm.org/10.1145/2020408.2020581
  70. 70.
    Wang, J., Zhang, Y., Posse, C., Bhasin, A.: Is It Time for a Career Switch? In: Proceedings of the 22Nd International Conference on World Wide Web, WWW ’13, pp. 1377–1388. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013). URL http://dl.acm.org/citation.cfm?id=2488388.2488509

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Yahoo LabsHaifaIsrael

Personalised recommendations