The Anatomy of Mobile Location-Based Recommender Systems

Abstract

The widespread adoption of smartphones is now putting both the Internet and sensor-rich hardware into the pockets of millions. While recommender systems have become the norm on many web sites, many mobile systems have historically been built as location-based services. However, these devices are becoming the ideal interface for recommender systems that help users discover, explore, and learn about their physical surroundings. In this chapter, we review the main components of a mobile location-based recommender system: the data that can be used to learn about users and items, the algorithms that have been applied to recommending venues, and the techniques that researchers have used to evaluate the quality of these recommendations, using research that is sourced from a variety of fields. This chapter closes by highlighting a number of opportunities and open challenges related to building future mobile recommender systems.

References

  1. 1.
    Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide: a Mobile Context-Aware Tour Guide. Wireless Network 3 (2007)Google Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Context-Aware Recommender Systems. In: ACM Recommender Systems, pp. 335–336. Lausanne, Switzerland (2008)Google Scholar
  3. 3.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender systems handbook, pp. 217–253. Springer (2011)Google Scholar
  4. 4.
    Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: Intrigue: Personalized Recommendation of Tourist Attractions for Desktop and Handset Devices. Applied Artificial Intelligence 17 (2003)Google Scholar
  5. 5.
    Ardissono, L., Kuflik, T., Petrelli, D.: Personalization in Cultural Heritage: The Road Travelled and the One Ahead. User Modelling and User-Adapted Interaction 22(1), 73–99 (2012)CrossRefGoogle Scholar
  6. 6.
    Baccigalupo, C., Plaza, E.: Case-Based Sequential Ordering of Songs for Playlist Recommendation. Lecture Notes in Computer Science 4106, 286 – 300 (2006)CrossRefGoogle Scholar
  7. 7.
    Backstrom, L., Leskovec, J.: Supervised Random Walks: Predicting and Recommending Links in Social Networks. In: ACM WSDM. Hong Kong, China (2011)CrossRefGoogle Scholar
  8. 8.
    Bawa-Cavia, A.: Sensing the Urban: Using Location-Based Social Network Data in Urban Analysis. In: Workshop on Pervasive Urban Applications. San Francisco, USA (2011)Google Scholar
  9. 9.
    Becker, R., Caceres, R., Hanson, K., Isaacman, S., Loh, J., Martonosi, M., Rowland, J., Urbanek, S., Varshavsky, A., Volisky, C.: Human Mobility Characterization from Cellular Network Data. Communications of the ACM 56(1), 74–82 (2013)CrossRefGoogle Scholar
  10. 10.
    Bellotti, V., Begole, B., Chi, E., et al.: Activity-Based Serendipitous Recommendations with the Magitti Mobile Leisure Guide. In: ACM CHI. Florence, Italy (2008)CrossRefGoogle Scholar
  11. 11.
    Blondel, V. (ed.): 3rd Conference on the Analysis of Mobile Phone Datasets. Boston, USA (2013)Google Scholar
  12. 12.
    C.H. Tai D.N. Yang, L.L., Chen, M.S.: Recommending Personalized Scenic Itinerary with Geo-Tagged Photos. In: ICME. Hannover, Germany (2008)Google Scholar
  13. 13.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing a Context-Aware Electronic Tourist Guide: Some Issues and Experiences. In: ACM CHI. The Hague, The Netherlands (2000)CrossRefGoogle Scholar
  14. 14.
    Cho, E., Myers, S., Leskovec, J.: Friendship and Mobility: User Movement in Location-Based Social Networks. In: ACM KDD. San Diego, USA (2011)CrossRefGoogle Scholar
  15. 15.
    Choudhury, M., Feldman, M., Amer-Yahia, S., Golbandi, N., Lempel, R., Yu, C.: Automatic Construction of Travel Itineraries using Social Breadcrumbs. In: ACM Hypertext. Ontario, Canada (2010)CrossRefGoogle Scholar
  16. 16.
    Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B., Hightower, J., Klasnja, P., Koscher, K., LaMarca, A., LeGrand, L., Lester, J., Rahimi, A., Rea, A., Wyatt, D.: The Mobile Sensing Platform: An Embedded Activity Recognition System. IEEE Pervasive Computing 7(2), 32–41 (2008)CrossRefGoogle Scholar
  17. 17.
    Church, K., Smyth, B.: Understanding the Intent Behind Mobile Information Needs. In: International Conference on Intelligent User Interfaces, pp. 247–256. Sanibel Island, FL, USA (2009)Google Scholar
  18. 18.
    Clements, M., Serdyukov, P., deVries, A.P., M.J.T.Reinders: Using Flickr Geotags to Predict User Travel Behaviour. In: ACM SIGIR. Geneva, Switzerland (2010)Google Scholar
  19. 19.
    Cohen, W., Schapire, R., Singer, Y.: Learning to Order Things. Journal of Artificial Intelligence Research 10(1), 243–270 (1999)MathSciNetMATHGoogle Scholar
  20. 20.
    Crandall, D., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the World’s Photos. In: WWW. Madrid, Spain (2009)Google Scholar
  21. 21.
    Deshpande, M., Karypis, G.: Item-Based Top-N Recommendation Algorithms. ACM Transactions on Information Systems 22(1), 143–177 (2004)CrossRefGoogle Scholar
  22. 22.
    Dey, A., Wac, K., Ferreira, D., Tassini, K., Hong, J., Ramos, J.: Getting Closer: An Empirical Investigation of the Proximity of Users to their Smartphones. In: ACM Ubicomp. Beijing, China (2011)CrossRefGoogle Scholar
  23. 23.
    Domenico, M.D., Lima, A., Musolesi, M.: Interdependence and Predictability of Human Mobility and Social Interactions. In: Nokia Mobile Data Challenge Workshop. Newcastle, United Kingdom (2012)Google Scholar
  24. 24.
    Eagle, N., Pentland, A.: Reality Mining: Sensing Complex Social Systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)CrossRefGoogle Scholar
  25. 25.
    Froehlich, J., Chen, M., Smith, I., Potter, F.: Voting With Your Feet: An Investigative Study of the Relationship Between Place Visit Behavior and Preference. In: ACM Ubicomp (2006)Google Scholar
  26. 26.
    Froehlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B., Landay, J.: UbiGreen: Investigating a Mobile Tool for Tracking and Supporting Green Transportation Habits. In: ACM CHI. Boston, USA (2009)CrossRefGoogle Scholar
  27. 27.
    Gallego-Vico, D., Woerndl, W., Bader, R.: A Study on Proactive Delivery of Restaurant Recommendations for Android Smartphones. In: ACM RecSys Workshop on Personalization in Mobile Applications. Chicago, USA (2011)Google Scholar
  28. 28.
    Gao, H., Tang, J., Hu, X., Liu, H.: Exploring Temporal Effects for Location Recommendation on Location-Based Social Networks. In: ACM Recommender Systems. Hong Kong, China (2013)CrossRefGoogle Scholar
  29. 29.
    Gavalas, D., Bellavista, P., Cao, J., Issarny, V.: Mobile Applications: Status and Trends. Journal of Systems and Software 84(11), 1823–1826 (2011)CrossRefGoogle Scholar
  30. 30.
    Girardin, F., Blat, J., Calabrese, F., Fiore, F.D., Ratti, C.: Digital Footprinting: Uncovering Tourists with User-Generated Content. IEEE Pervasive Computing 7(4), 36–43 (2008)CrossRefGoogle Scholar
  31. 31.
    Girardin, F., Calabrese, F., Fiore, F.D., Ratti, C., Blat, J.: Digital Footprinting: Uncovering Tourists with User-Generated Content. IEEE Pervasive Computing 7(4), 36–43 (2008)CrossRefGoogle Scholar
  32. 32.
    Girardin, F., Fiore, F.D., Ratti, C., Blat, J.: Leveraging Explicitly Disclosed Location Information to Understand Tourist Dynamics: A Case Study. Journal of Location-Based Services 2(1), 41–54 (2008)CrossRefGoogle Scholar
  33. 33.
    Gonzalez, M., Hidalgo, C., Barabasi, A.L.: Understanding Individual Human Mobility Patterns. Nature 453(5) (2008)Google Scholar
  34. 34.
    van der Heijden, H., Kotsis, G., Kronsteiner, R.: Mobile Recommendation Systems for Decision Making on the Go. In: IEEE ICMB (2005)Google Scholar
  35. 35.
    Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22, 5–53 (2004)CrossRefGoogle Scholar
  36. 36.
    Hu, Y., Koren, Y., Volinsky, C.: Collaborative Filtering for Implicit Feedback Datasets. In: IEEE ICDM, pp. 263–272. Pisa, Italy (2008)Google Scholar
  37. 37.
    Jambor, T., Wang, J.: Optimizing Multiple Objectives in Collaborative Filtering. In: ACM Recommender Systems, pp. 55–62. Barcelona, Spain (2010)Google Scholar
  38. 38.
    Karamshuk, D., Noulas, A., Scellato, S., Nicosia, V., Mascolo, C.: Geo-Spotting: Mining Online Location-Based Services for Optimal Retail Store Placement. In: ACM KDD. Chicago, USA (2013)CrossRefGoogle Scholar
  39. 39.
    Karatzoglou, A., Baltrunas, L., Church, K., Bohmer, M.: Climbing the App Wall: Mobile App Discovery through Context-Aware Recommendations. In: ACM CIKM. Maui, Hawaii (2012)CrossRefGoogle Scholar
  40. 40.
    Kennedy, L., Naaman, M.: Generating Diverse and Representative Image Search Results for Landmarks. In: WWW. Madrid, Spain (2008)CrossRefGoogle Scholar
  41. 41.
    Kennedy, L., Naaman, M., Ahern, S., Nair, R., Rattenbury, T.: How Flickr Helps us Make Sense of the World: Context and Content in Community-Contributed Media Collections. In: ACM MM. Augsburg, Germany (2007)CrossRefGoogle Scholar
  42. 42.
    Kenteris, M., Gavalas, D., Economou, D.: Electronic Mobile Guides: A Survey. Personal and Ubiquitous Computing 15(1), 97–111 (2011)CrossRefGoogle Scholar
  43. 43.
    Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.: A Survey of Mobile Phone Sensing. IEEE Communications Magazine (2010)Google Scholar
  44. 44.
    Lathia, N., Capra, L.: Mining Mobility Data to Minimise Travellers’ Spending on Public Transport. In: ACM KDD. San Diego, California (2011)CrossRefGoogle Scholar
  45. 45.
    Lathia, N., Froehlich, J., Capra, L.: Mining Public Transport Usage for Personalised Intelligent Transport Systems. In: IEEE ICDM. Sydney, Australia (2010)CrossRefGoogle Scholar
  46. 46.
    Lathia, N., Pejovic, V., Rachuri, K., Musolesi, M., Rentfrow, P.: Smartphones for Large-Scale Behaviour Change Interventions. IEEE Pervasive Computing, Special Issue on Understanding and Changing Behaviour 12(3) (2013)Google Scholar
  47. 47.
    Lathia, N., Rachuri, K., Mascolo, C., Rentfrow, P.: Contextual Dissonance: Design Bias in Sensor-Based Experience Sampling Methods. In: ACM Ubicomp. Zurich, Switzerland (2013)CrossRefGoogle Scholar
  48. 48.
    Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.: Mining User Similarity Based on Location History. In: Intl. Conf. on Advances in Geographic Information Systems. Santa Ana, USA (2008)CrossRefGoogle Scholar
  49. 49.
    Lindqvist, J., Cranshaw, J., Wiese, J., Hong, J., Zimmerman, J.: I’m the Mayor of My House: Examining Why People Use Foursquare - a Social-Driven Location Sharing Application. In: ACM CHI. Vancouver, Canada (2011)CrossRefGoogle Scholar
  50. 50.
    Lu, H., Pan, W., Lane, N., Choudhury, T., Campbell, A.: SoundSense: Scalable Sound Sensing for People-Centric Applications on Mobile Phones. In: ACM MobiSys. Krakow, Poland (2009)CrossRefGoogle Scholar
  51. 51.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: Position Paper, Tagging, Taxonomy, Flickr, Article, ToRead. In: Collaborative Web Tagging Workshop (WWW) (2006)Google Scholar
  52. 52.
    Miller, B., Konstan, J., Riedl, J.: PocketLens: Toward a Personal Recommender System. In: ACM TOIS (2005)Google Scholar
  53. 53.
    Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: WhereNext: A Location Predictor on Trajectory Pattern Mining. In: ACM SIGKDD, pp. 637–646. Paris, France (2009)Google Scholar
  54. 54.
    Noulas, A., Scellato, S., Lambiotte, R., Pontil, M., Mascolo, C.: A Tale of Many Cities: Universal Patterns in Human Urban Mobility. PLoS ONE 7(5) (2012)Google Scholar
  55. 55.
    Noulas, A., Scellato, S., Lathia, N., Mascolo, C.: A Random Walk Around the City: New Venue Recommendation in Location-Based Social Networks. In: IEEE International Conference on Social Computing. Amsterdam, The Netherlands (2012)Google Scholar
  56. 56.
    Noulas, A., Scellato, S., Lathia, N., Mascolo, C.: Mining User Mobility Features for Next Place Prediction in Location-based Services. In: IEEE Internationcal Conference on Data Mining. Brussels, Belgium (2012)CrossRefGoogle Scholar
  57. 57.
    Noulas, A., Scellato, S., Mascolo, C., Pontil, M.: An Empirical Study of Geographic User Activity Patterns in Foursquare. In: AAAI ICWSM. Barcelona, Spain (2011)Google Scholar
  58. 58.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringin Order to the Web. In: Technical Report Stanford InfoLab. Stanford, USA (1999)Google Scholar
  59. 59.
    Pejovic, V., Musolesi, M.: InterruptMe: Designing Intelligent Prompting Mechanisms in Pervasive Applications. In: ACM Ubicomp. Seattle, USA (2014)CrossRefGoogle Scholar
  60. 60.
    Popescu, A., Grefenstette, G.: Deducing Trip Related Information from Flickr. In: WWW. Madrid, Spain (2009)CrossRefGoogle Scholar
  61. 61.
    Quercia, D., Capra, L.: FriendSensing: Recommending Friends Using Mobile Phones. In: ACM RecSys. New York, USA (2009)CrossRefGoogle Scholar
  62. 62.
    Quercia, D., Lathia, N., Calabrese, F., Lorenzo, G.D., Crowcroft, J.: Recommending Social Events from Mobile Phone Location Data. In: IEEE ICDM. Sydney, Australia (2010)CrossRefGoogle Scholar
  63. 63.
    Quercia, D., Leontiadis, I., McNamara, L., Mascolo, C., Crowcroft, J.: SpotME If You Can: Randomized Responses for Location Obfuscation on Mobile Phones. In: ICDCS. Minneapolis, USA (2011)Google Scholar
  64. 64.
    Rachuri, K., Mascolo, C., Musolesi, M.: Energy-Accuracy Trade-offs of Sensor Sampling in Smart Phone based Sensing Systems. In: Mobile Context Awareness: Capabilities, Challenges and Applications Workshop. Springer, Copenhagen, Denmark (2010)Google Scholar
  65. 65.
    Rachuri, K., Mascolo, C., Musolesi, M., Rentfrow, P.: SociableSense: Exploring the Trade-offs of Adaptive Sampling and Computation Offloading for Social Sensing. In: ACM MobiCom. Las Vegas, USA (2011)CrossRefGoogle Scholar
  66. 66.
    Rattenbury, T., Good, N., Naaman, M.: Toward Automatic Extraction of Event and Place Semantics from Flickr Tags. In: ACM SIGIR, pp. 103–110 (2007)Google Scholar
  67. 67.
    Ratti, C., Pulselli, R., Williams, S., Frenchman, D.: Mobile Landscapes: Using Location Data from Cell Phones for Urban Analysis. Environment and Planning B 33(5), 727–748 (2006)CrossRefGoogle Scholar
  68. 68.
    Ricci, F.: Mobile Recommender Systems. Journal of IT & Tourism 12(3), 205–231 (2011)Google Scholar
  69. 69.
    Ricci, F., Nguyen, Q.N.: Critique-Based Mobile Recommender Systems. OGAI Journal (2005)Google Scholar
  70. 70.
    Salamo, M., McCarthy, K., Smyth, B.: Generating Recommendations for Consensus Negotiation in Group Personalization Services. Personal and Ubiquitous Computing 16(5), 597–610 (2012)CrossRefGoogle Scholar
  71. 71.
    Scellato, S., Musolesi, M., Mascolo, C., Latora, V., Campbell, A.: NextPlace: A Spatio-Temporal Prediction Framework for Pervasive Systems. In: Ninth International Conference on Pervasive Computing. San Francisco, USA (2011)Google Scholar
  72. 72.
    Schiller, J., Voisard, A. (eds.): Location-Based Services. Morgan Kaufman Publishers (2004)Google Scholar
  73. 73.
    van Setten, M., Pokraev, S., Koolwaaij, J.: Context- Aware Recommendations in the Mobile Tourist Application COMPASS. In: Adaptive Hypermedia and Adaptive Web-Based Systems. Eindhoven, The Netherlands (2004)CrossRefGoogle Scholar
  74. 74.
    Shaw, B., Shea, J., Sinha, S., Hogue, A.: Learning to Rank for Spatiotemporal Search. In: ACM WSDM. Rome, Italy (2013)CrossRefGoogle Scholar
  75. 75.
    Sklar, M., Shaw, B., Hogue, A.: Recommending Interesting Events in Real Time with Foursquare Checkins. In: ACM Recommender Systems. Dublin, Ireland (2012)Google Scholar
  76. 76.
    Sohn, T., Varshavky, A., LaMarca, A., Chen, M., Choudhury, T., Smith, I., Consolvo, S., Hightower, J., Grisworld, W., de Lara, E.: Mobility Detection Using Everyday GSM Traces. In: ACM Ubicomp. Orange County, USA (2006)CrossRefGoogle Scholar
  77. 77.
    Stenneth, L., Wolfson, O., Yu, P., Xu, B.: Transportation Mode Detection using Mobile Phones and GIS Information. In: ACM SIGSPATIAL. Chicago, USA (2011)CrossRefGoogle Scholar
  78. 78.
    Takeuchi, Y., Sugimoto, M.: CityVoyager: an Outdoor Recommendation System Based on User Location History. Ubiquitous Intelligence and Computing (2006)Google Scholar
  79. 79.
    Tintarev, N., Amatriain, X., Flores, A.: Off the Beaten Track: A Mobile Field Study Exploring the Long Tail of Tourist Recommendations. In: MobileHCI. Lisbon, Portugal (2010)CrossRefGoogle Scholar
  80. 80.
    Tong, H., Faloutsos, C., Pan, J.: Fast Random Walk with Restart and Its Applications. In: IEEE International Conference on Data Mining. Hong Kong, China (2006)CrossRefGoogle Scholar
  81. 81.
    Tung, H., Soo, V.: A Personalized Restaurant Recommender Agent for Mobile E-Service. In: Proceedings of IEEE International Conference on e-Technology, e-Commerce, and e-Services, pp. 259–262. Washington DC, USA (2004)Google Scholar
  82. 82.
    Yang, W., Cheng, H., Dia, J.: A Location-Aware Recommender System for Mobile Shopping Environments. Expert Systems with Applications (2008)Google Scholar
  83. 83.
    Yoon, H., Zheng, Y., Xie, X., Woo, W.: Social Itinerary Recommendation from User-Generated Digital Trails. Personal and Ubiquitous Computing 16(5), 469–484 (2012)CrossRefGoogle Scholar
  84. 84.
    Yuan, N., Zheng, Y., Zhang, L., Xie, X.: T-Finder: A Recommender System for Fidning Passengers and Vacant Taxis. IEEE Transactions on Knowledge and Data Engineering 25(10) (2013)Google Scholar
  85. 85.
    Zhang, A., Noulas, A., Scellato, S., Mascolo, C.: Hoodsquare: Modeling and Recommending Neighborhoods in Location-Based Social Networks. In: SocialCom. Washington DC, USA (2013)Google Scholar
  86. 86.
    Zheng, V., Zheng, Y., Xie, X., Yang, Q.: Collaborative Location and Activity Recommendations with GPS History Data. In: WWW. Raleigh, North Carolina (2010)CrossRefGoogle Scholar
  87. 87.
    Zheng, V.W., Cao, B., Zheng, Y., Xie, X., Yang, Q.: Collaborative filtering meets mobile recommendation: A user-centered approach. In: AAAI (2010)Google Scholar
  88. 88.
    Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.: Understanding Mobility Based on GPS Data. In: ACM Ubicomp. Seoul, Korea (2008)CrossRefGoogle Scholar
  89. 89.
    Zheng, Y., Zhang, L., Xie, X., Ma, W.: Mining Interesting Locations and Travel Sequences From GPS Trajectories. In: WWW. Madrid, Spain (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Computer LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations