Music Recommender Systems

  • Markus Schedl
  • Peter Knees
  • Brian McFee
  • Dmitry Bogdanov
  • Marius Kaminskas

Abstract

This chapter gives an introduction to music recommender systems research. We highlight the distinctive characteristics of music, as compared to other kinds of media. We then provide a literature survey of content-based music recommendation, contextual music recommendation, hybrid methods, and sequential music recommendation, followed by overview of evaluation strategies and commonly used data sets. We conclude by pointing to the most important challenges faced by music recommendation research.

References

  1. 1.
    Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Magazine 32, 67–80 (2011)Google Scholar
  2. 2.
    Aiolli, F.: A preliminary study on a recommender system for the million songs dataset challenge. Preference Learning: Problems and Applications in AI p. 1 (2012)Google Scholar
  3. 3.
    Aizenberg, N., Koren, Y., Somekh, O.: Build your own music recommender by modeling internet radio streams. In: Proceedings of the 21st International Conference on World Wide Web, pp. 1–10. ACM, New York, NY, USA (2012)Google Scholar
  4. 4.
    Alghoniemy, M., Tewfik, A.: Music Playlist Generation Based on Global and Transitional Constraints. In: IEEE Transactions on Multimedia (2003)Google Scholar
  5. 5.
    Ankolekar, A., Sandholm, T.: Foxtrot: a soundtrack for where you are. In: Proceedings of Interacting with Sound Workshop: Exploring Context-Aware, Local and Social Audio Applications, pp. 26–31 (2011)Google Scholar
  6. 6.
    Aucouturier, J.J.: Sounds like teen spirit: Computational insights into the grounding of everyday musical terms. In: J. Minett, W. Wang (eds.) Language, Evolution and the Brain, Frontiers in Linguistics, pp. 35–64. Taipei: Academia Sinica Press (2009)Google Scholar
  7. 7.
    Aucouturier, J.J., Pachet, F.: Scaling Up Music Playlist Generation. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2002), pp. 105–108. Lausanne, Switzerland (2002)Google Scholar
  8. 8.
    Aucouturier, J.J., Pachet, F., Sandler, M.: “The way it sounds”: timbre models for analysis and retrieval of music signals. IEEE Trans. on Multimedia 7(6), 1028–1035 (2005).CrossRefGoogle Scholar
  9. 9.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A nucleus for a web of open data. In: ISWC’08, pp. 722–735 (2008)Google Scholar
  10. 10.
    Baccigalupo, C.G.: Poolcasting: an intelligent technique to customise musical programmes for their audience. Ph.D. thesis, Universitat Autònoma de Barcelona (2009)Google Scholar
  11. 11.
    Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Lüke, K.H., Schwaiger, R.: InCarMusic: Context-Aware Music Recommendations in a Car. In: International Conference on Electronic Commerce and Web Technologies (EC-Web). Toulouse, France (2011)Google Scholar
  12. 12.
    Barrington, L., Oda, R., Lanckriet, G.: Smarter than genius? Human evaluation of music recommender systems. In: Proceedings of the 10th International Conference on Music Information Retrieval (ISMIR’09), pp. 357–362 (2009)Google Scholar
  13. 13.
    Bertin-Mahieux, T., Eck, D., Maillet, F., Lamere, P.: Autotagger: A model for predicting social tags from acoustic features on large music databases. Journal of New Music Research 37(2), 115–135 (2008).CrossRefGoogle Scholar
  14. 14.
    Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the 12th International Society for Music Information Retrieval Conference, pp. 591–596. Miami, USA (2011)Google Scholar
  15. 15.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Machine Learning Research 3, 993–1022 (2003)MATHGoogle Scholar
  16. 16.
    Bogdanov, D.: From music similarity to music recommendation: Computational approaches based in audio features and metadata. Ph.D. thesis, Universitat Pompeu Fabra, Barcelona, Spain (2013)Google Scholar
  17. 17.
    Bogdanov, D., Haro, M., Fuhrmann, F., Xambó, A., Gómez, E., Herrera, P.: Semantic audio content-based music recommendation and visualization based on user preference examples. Information Processing & Management 49(1), 13–33 (2013).CrossRefGoogle Scholar
  18. 18.
    Bogdanov, D., Herrera, P.: How much metadata do we need in music recommendation? a subjective evaluation using preference sets. In: Int. Society for Music Information Retrieval Conf. (ISMIR’11), pp. 97–102 (2011)Google Scholar
  19. 19.
    Bogdanov, D., Herrera, P.: Taking advantage of editorial metadata to recommend music. In: Int. Symp. on Computer Music Modeling and Retrieval (CMMR’12) (2012).Google Scholar
  20. 20.
    Bogdanov, D., Serrà, J., Wack, N., Herrera, P., Serra, X.: Unifying Low-Level and High-Level Music Similarity Measures. IEEE Transactions on Multimedia 13(4), 687–701 (2011)CrossRefGoogle Scholar
  21. 21.
    Boland, D., Murray-Smith, R.: Information-theoretic Measures of Music Listening Behaviour. In: Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014). Taipei, Taiwan (2014)Google Scholar
  22. 22.
    Bonnin, G., Jannach, D.: Evaluating the quality of playlists based on hand-crafted samples. In: 14th International Society for Music Information Retrieval Conference, ISMIR (2013)Google Scholar
  23. 23.
    Bosteels, K., Pampalk, E., Kerre, E.: Evaluating and analysing dynamic playlist generation heuristics using radio logs and fuzzy set theory. In: Proceedings of the 10th International Society for Music Information Retrieval Conference, ISMIR (2009)Google Scholar
  24. 24.
    Braunhofer, M., Kaminskas, M., Ricci, F.: Location-aware music recommendation. International Journal of Multimedia Information Retrieval 2(1), 31–44 (2013).CrossRefGoogle Scholar
  25. 25.
    Bu, J., Tan, S., Chen, C., Wang, C., Wu, H., Zhang, L., He, X.: Music recommendation by unified hypergraph: combining social media information and music content. In: ACM Int. Conf. on Multimedia (MM’10), pp. 391–400 (2010).Google Scholar
  26. 26.
    Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)CrossRefMATHGoogle Scholar
  27. 27.
    Burke, R.: Hybrid web recommender systems. In: The adaptive web, pp. 377–408 (2007)Google Scholar
  28. 28.
    Cai, R., Zhang, C., Wang, C., Zhang, L., Ma, W.Y.: Musicsense: contextual music recommendation using emotional allocation modeling. In: MULTIMEDIA ‘07: Proceedings of the 15th international conference on Multimedia, pp. 553–556. ACM, New York, NY, USA (2007)Google Scholar
  29. 29.
    Casey, M.A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., Slaney, M.: Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE 96(4), 668–696 (2008)CrossRefGoogle Scholar
  30. 30.
    Casey, M.A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., Slaney, M.: Content-Based Music Information Retrieval: Current Directions and Future Challenges. Proceedings of the IEEE 96, 668–696 (2008)CrossRefGoogle Scholar
  31. 31.
    Celma, Ò.: Music Recommendation and Discovery – The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, Berlin, Germany (2010)Google Scholar
  32. 32.
    Celma, O., Herrera, P.: A new approach to evaluating novel recommendations. In: ACM Conf. on Recommender Systems (RecSys’08), pp. 179–186 (2008)Google Scholar
  33. 33.
    Celma, O., Herrera, P., Serra, X.: Bridging the music semantic gap. In: ESWC 2006 Workshop on Mastering the Gap: From Information Extraction to Semantic Representation (2006). Available online: http://mtg.upf.edu/node/874
  34. 34.
    Celma, O., Lamere, P.: Music recommendation and discovery revisited. In: Proceedings of the 5th ACM Conference on Recommender Systems (RecSys 2011), pp. 7–8. ACM, New York, NY, USA (2011)Google Scholar
  35. 35.
    Celma, O., Ramírez, M., Herrera, P.: FOAFing the music: A music recommendation system based on RSS feeds and user preferences. In: Int. Conf. on Music Information Retrieval (ISMIR’05) (2005)Google Scholar
  36. 36.
    Cunningham, S., Caulder, S., Grout, V.: Saturday Night or Fever? Context-Aware Music Playlists. In: Proceedings of the 3rd International Audio Mostly Conference of Sound in Motion (2008)Google Scholar
  37. 37.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)CrossRefGoogle Scholar
  38. 38.
    Dey, A., Abowd, G.: Towards a better understanding of context and context-awareness. In: CHI 2000 workshop on the what, who, where, when, and how of context-awareness, vol. 4, pp. 1–6 (2000)Google Scholar
  39. 39.
    Diaz-Aviles, E., Georgescu, M., Nejdl, W.: Swarming to Rank for Recommender Systems. In: Proceedings of the 6th ACM Conference on Recommender Systems. Dublin, Ireland (2012)Google Scholar
  40. 40.
    Dieleman, S., Brakel, P., Schrauwen, B.: Audio-based music classification with a pretrained convolutional network. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011). Miami, FL, USA (2011)Google Scholar
  41. 41.
    Donaldson, J.: A Hybrid Social-Acoustic Recommendation System for Popular Music. In: Proceedings of the ACM Recommender Systems (RecSys 2007). Minneapolis, MN, USA (2007)Google Scholar
  42. 42.
    Dopler, M., Schedl, M., Pohle, T., Knees, P.: Accessing Music Collections via Representative Cluster Prototypes in a Hierarchical Organization Scheme. In: Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR’08). Philadelphia, PA, USA (2008)Google Scholar
  43. 43.
    Dror, G., Koenigstein, N., Koren, Y.: Yahoo! Music Recommendations: Modeling Music Ratings with Temporal Dynamics and Item Taxonomy. In: Proceedings of the 5th ACM Conference on Recommender Systems (RecSys 2011). Chicago, USA (2011)Google Scholar
  44. 44.
    Dror, G., Koenigstein, N., Koren, Y., Weimer, M.: The Yahoo! Music Dataset and KDD-Cup’11. Journal of Machine Learning Research: Proceedings of KDD-Cup 2011 competition 18, 3–18 (2012)Google Scholar
  45. 45.
    Elliott, G.T., Tomlinson, B.: Personalsoundtrack: context-aware playlists that adapt to user pace. In: CHI ‘06: CHI ‘06 extended abstracts on Human factors in computing systems, pp. 736–741. ACM, New York, NY, USA (2006)Google Scholar
  46. 46.
    Farrahi, K., Schedl, M., Vall, A., Hauger, D., Tkalčič, M.: Impact of Listening Behavior on Music Recommendation. In: Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014). Taipei, Taiwan (2014)Google Scholar
  47. 47.
    Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci, F.: Knowledge-based music retrieval for places of interest. In: Proceedings of the 2nd International Workshop on Music Information Retrieval with User-Centered and Multimodal Strategies (MIRUM), pp. 19–24 (2012)Google Scholar
  48. 48.
    Fields, B.: Contextualize your listening: the playlist as recommendation engine. Ph.D. thesis, Department of Computing Goldsmiths, University of London (2011)Google Scholar
  49. 49.
    Fields, B., Rhodes, C., Casey, M., Jacobson, K.: Social playlists and bottleneck measurements: Exploiting musician social graphs using content-based dissimilarity and pairwise maximum flow values. In: ISMIR, pp. 559–564 (2008)Google Scholar
  50. 50.
    Figueiredo, F., Almeida, J.M., Matsubara, Y., Ribeiro, B., Faloutsos, C.: Revisit behavior in social media: The phoenix-r model and discoveries. In: Proceedings of the 7th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2014). Nancy, France (2014)Google Scholar
  51. 51.
    Flexer, A., Schnitzer, D., Gasser, M., Widmer, G.: Playlist generation using start and end songs. In: ISMIR, pp. 173–178 (2008)Google Scholar
  52. 52.
    Foley Jr, J.: The occupational conditioning of preferential auditory tempo: a contribution toward an empirical theory of aesthetics. The Journal of Social Psychology 12(1), 121–129 (1940)CrossRefGoogle Scholar
  53. 53.
    Goel, S., Broder, A., Gabrilovich, E., Pang, B.: Anatomy of the Long Tail: Ordinary People with Extraordinary Tastes. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM 2010). New York, USA (2010)Google Scholar
  54. 54.
    Green, S.J., Lamere, P., Alexander, J., Maillet, F., Kirk, S., Holt, J., Bourque, J., Mak, X.W.: Generating transparent, steerable recommendations from textual descriptions of items. In: ACM Conf. on Recommender Systems (RecSys’09), pp. 281–284 (2009)Google Scholar
  55. 55.
    Grimaldi, M., Cunningham, P.: Experimenting with music taste prediction by user profiling. In: ACM SIGMM Int. Workshop on Multimedia Information Retrieval (MIR’04), pp. 173–180 (2004)Google Scholar
  56. 56.
    Hariri, N., Mobasher, B., Burke, R.: Context-aware music recommendation based on latenttopic sequential patterns. In: Proceedings of the sixth ACM conference on Recommender systems, pp. 131–138. ACM (2012)Google Scholar
  57. 57.
    Hauger, D., Schedl, M., Košir, A., Tkalčič, M.: The Million Musical Tweets Dataset: What Can We Learn From Microblogs. In: Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR 2013). Curitiba, Brazil (2013)Google Scholar
  58. 58.
    Haupt, J.: Last.fm: People-powered online radio. Music Reference Services Quarterly 12(1), 23–24 (2009).Google Scholar
  59. 59.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. on Information Systems 22(1), 5–53 (2004).CrossRefGoogle Scholar
  60. 60.
    Herrera, P., Resa, Z., Sordo, M.: Rocking around the clock eight days a week: an exploration of temporal patterns of music listening. In: ACM Conf. on Recommender Systems. Workshop on Music Recommendation and Discovery (Womrad 2010), pp. 7–10 (2010)Google Scholar
  61. 61.
    Hinton, G., Deng, L., Yu, D., Dahl, G.E., rahman Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N.,, Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine 29(6), 82–97 (2012)Google Scholar
  62. 62.
    Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE Computer Society, Washington, DC, USA (2008)Google Scholar
  63. 63.
    Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Eighth IEEE International Conference on Data Mining, ICDM, pp. 263–272 (2008)Google Scholar
  64. 64.
    Hu, Y., Ogihara, M.: Nextone player: A music recommendation system based on user behaviour. In: Int. Society for Music Information Retrieval Conf. (ISMIR’11) (2011)Google Scholar
  65. 65.
    Hu, Y., Ogihara, M.: Genre classification for million song dataset using confidence-based classifiers combination. In: Proceedings of the 35th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) (2012)Google Scholar
  66. 66.
    Humphrey, E.J., Nieto, O., Bello, J.P.: Data driven and discriminative projections for large-scale cover song identification. In: Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR 2013). Curitiba, Brazil (2013)Google Scholar
  67. 67.
    Jones, N., Pu, P.: User technology adoption issues in recommender systems. In: Networking and Electronic Commerce Research Conf. (2007)Google Scholar
  68. 68.
    Kaminskas, M., Ricci, F., Schedl, M.: Location-aware Music Recommendation Using Auto-Tagging and Hybrid Matching. In: Proceedings of the 7th ACM Conference on Recommender Systems (RecSys 2013). Hong Kong, China (2013)Google Scholar
  69. 69.
    Knees, P., Pohle, T., Schedl, M., Widmer, G.: Combining Audio-based Similarity with Web-based Data to Accelerate Automatic Music Playlist Generation. In: Proceedings of the 8th ACM SIGMM International Workshop on Multimedia Information Retrieval (MIR’06). Santa Barbara, CA, USA (2006)Google Scholar
  70. 70.
    Knees, P., Schedl, M.: A survey of music similarity and recommendation from music context data. ACM Transactions on Multimedia Computing, Communications and Applications 10(1), 2:1–2:21 (2013)Google Scholar
  71. 71.
    Koenigstein, N., Shavitt, Y., Zilberman, N.: Predicting billboard success using data-mining in p2p networks. In: Multimedia, 2009. ISM’09. 11th IEEE International Symposium on, pp. 465–470. IEEE (2009)Google Scholar
  72. 72.
    Konecni, V.: Social interaction and musical preference. The psychology of music pp. 497–516 (1982)Google Scholar
  73. 73.
    Koren, Y., Sill, J.: OrdRec: an Ordinal Model for Predicting Personalized Item Rating Distributions. In: Proceedings of the 5th ACM Conference on Recommender Systems (RecSys 2011). Chicago, USA (2011)Google Scholar
  74. 74.
    Levy, M., Sandler, M.: Learning latent semantic models for music from social tags. Journal of New Music Research 37(2), 137–150 (2008)CrossRefGoogle Scholar
  75. 75.
    Li, C.T., Shan, M.K.: Emotion-based impressionism slideshow with automatic music accompaniment. In: MULTIMEDIA ‘07: Proceedings of the 15th international conference on Multimedia, pp. 839–842. ACM Press, New York, NY, USA (2007)Google Scholar
  76. 76.
    Li, Q., Myaeng, S.H., Kim, B.M.: A probabilistic music recommender considering user opinions and audio features. Information Processing & Management 43(2), 473–487 (2007)CrossRefGoogle Scholar
  77. 77.
    Lim, D., Mcfee, B., Lanckriet, G.R.: Robust structural metric learning. In: S. Dasgupta, D. Mcallester (eds.) Proceedings of the 30th International Conference on Machine Learning (ICML-13), vol. 28, pp. 615–623. JMLR Workshop and Conference Proceedings (2013).Google Scholar
  78. 78.
    Logan, B.: Content-based Playlist Generation: Exploratory Experiments. In: Proceedings of the 3rd International Symposium on Music Information Retrieval (ISMIR 2002), pp. 295–296. Paris, France (2002)Google Scholar
  79. 79.
    Logan, B.: Music recommendation from song sets. In: Int. Conf. on Music Information Retrieval (ISMIR’04), pp. 425–428 (2004)Google Scholar
  80. 80.
    Logan, B., Salomon, A.: A music similarity function based on signal analysis. In: IEEE Int. Conf. on Multimedia and Expo (ICME’01), p. 190 (2001).Google Scholar
  81. 81.
    Lu, C.C., Tseng, V.S.: A novel method for personalized music recommendation. Expert Systems with Applications 36(6), 10,035–10,044 (2009)CrossRefGoogle Scholar
  82. 82.
    Magno, T., Sable, C.: A comparison of signal-based music recommendation to genre labels, collaborative filtering, musicological analysis, human recommendation, and random baseline. In: Int. Conf. on Music Information Retrieval (ISMIR’08), pp. 161–166 (2008)Google Scholar
  83. 83.
    Maillet, F., Eck, D., Desjardins, G., Lamere, P.: Steerable playlist generation by learning song similarity from radio station playlists. In: Proceedings of the 10th International Conference on Music Information Retrieval (2009)Google Scholar
  84. 84.
    McFee, B., Barrington, L., Lanckriet, G.: Learning content similarity for music recommendation. IEEE Trans. on Audio, Speech, and Language Processing 20(8), 2207–2218 (2012).Google Scholar
  85. 85.
    McFee, B., Bertin-Mahieux, T., Ellis, D., Lanckriet, G.: The million song dataset challenge. In: Proc. of the 4th International Workshop on Advances in Music Information Research (AdMIRe) (2012)Google Scholar
  86. 86.
    McFee, B., Lanckriet, G.: The Natural Language of Playlists. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR). Miami, FL, USA (2011)Google Scholar
  87. 87.
    McFee, B., Lanckriet, G.: Hypergraph Models of Playlist Dialects. In: Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR 2012). Porto, Portugal (2012)Google Scholar
  88. 88.
    McFee, B., Lanckriet, G.R.: Learning multi-modal similarity. Journal of Machine Learning Research 12, 491–523 (2011)MathSciNetMATHGoogle Scholar
  89. 89.
    McNee, S., Riedl, J., Konstan, J.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI’06 extended abstracts on Human Factors in Computing Systems, p. 1101 (2006)Google Scholar
  90. 90.
    Mesnage, C.S.: Social shuffle: music discovery with tag navigation and social diffusion. Ph.D. thesis, Università della Svizzera italiana, Lugano, Switzerland (2011)Google Scholar
  91. 91.
    Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness. ACM Transactions on Internet Technology 7(4) (2007)Google Scholar
  92. 92.
    Moh, Y., Orbanz, P., Buhmann, J.M.: Music preference learning with partial information. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP’08), pp. 2021–2024 (2008)Google Scholar
  93. 93.
    Moore, J.L., Chen, S., Joachims, T., Turnbull, D.: Learning to embed songs and tags for playlist prediction. In: 13th International Society for Music Information Retrieval Conference, ISMIR, pp. 349–354 (2012)Google Scholar
  94. 94.
    Moore, J.L., Chen, S., Joachims, T., Turnbull, D.: Taste over time: The temporal dynamics of user preferences. In: 14th International Society for Music Information Retrieval Conference, ISMIR (2013)Google Scholar
  95. 95.
    Moore, J.L., Joachims, T., Turnbull, D.: Taste Space Versus the World: An Embedding Analysis of Listening Habits and Geography. In: Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014). Taipei, Taiwan (2014)Google Scholar
  96. 96.
    North, A., Hargreaves, D.: Situational influences on reported musical preference. Psychomusicology: Music, Mind and Brain 15(1–2), 30–45 (1996)CrossRefGoogle Scholar
  97. 97.
    North, A., Hargreaves, D.: The social and applied psychology of music. Cambridge Univ Press (2008)Google Scholar
  98. 98.
    Okada, K., Karlsson, B.F., Sardinha, L., Noleto, T.: Contextplayer: Learning contextual music preferences for situational recommendations. In: SIGGRAPH Asia 2013 Symposium on Mobile Graphics and Interactive Applications, p. 6. ACM (2013)Google Scholar
  99. 99.
    de Oliveira, R., Oliver, N.: Triplebeat: enhancing exercise performance with persuasion. In: Proceedings of the 10th international conference on Human computer interaction with mobile devices and services, pp. 255–264. ACM (2008)Google Scholar
  100. 100.
    van den Oord, A., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Weinberger (eds.) Advances in Neural Information Processing Systems 26, vol. 26, p. 9. Neural Information Processing Systems Foundation (NIPS), Lake Tahoe, NV, USA (2013)Google Scholar
  101. 101.
    Pachet, F.: Knowledge management and musical metadata. Idea Group (2005)Google Scholar
  102. 102.
    Pachet, F., Roy, P., Cazaly, D.: A combinatorial approach to content-based music selection. Multimedia, IEEE 7(1), 44–51 (2000)CrossRefGoogle Scholar
  103. 103.
    Pampalk, E., Flexer, A., Widmer, G.: Improvements of audio-based music similarity and genre classification. In: Int. Conf. on Music Information Retrieval (ISMIR’05), pp. 628–633 (2005)Google Scholar
  104. 104.
    Pampalk, E., Pohle, T., Widmer, G.: Dynamic playlist generation based on skipping behavior. In: Int. Conf. on Music Information Retrieval (ISMIR’05), pp. 634–637 (2005)Google Scholar
  105. 105.
    Park, H.S., Yoo, J.O., Cho, S.B.: A context-aware music recommendation system using fuzzy bayesian networks with utility theory. In: FSKD 2006. LNCS (LNAI), pp. 970–979. Springer (2006)Google Scholar
  106. 106.
    Pauws, S., Eggen, B.: PATS: Realization and user evaluation of an automatic playlist generator. In: Proceedings of the 2nd International Symposium on Music Information Retrieval, ISMIR (2002)Google Scholar
  107. 107.
    Pauws, S., Verhaegh, W., Vossen, M.: Fast generation of optimal music playlists using local search. In: ISMIR, pp. 138–143. Citeseer (2006)Google Scholar
  108. 108.
    Pazzani, M., Billsus, D.: Learning and revising user profiles: The identification of interesting web sites. Machine Learning 27(3), 313–331 (1997).CrossRefGoogle Scholar
  109. 109.
    Pettijohn, T., Williams, G., Carter, T.: Music for the seasons: Seasonal music preferences in college students. Current Psychology pp. 1–18 (2010)Google Scholar
  110. 110.
    Platt, J.C., Burges, C.J.C., Swenson, S., Weare, C., Zheng, A.: Learning a gaussian process prior for automatically generating music playlists. In: Advances in Neural Information Processing Systems. MIT Press (2002)Google Scholar
  111. 111.
    Pohle, T., Knees, P., Schedl, M., Pampalk, E., Widmer, G.: “Reinventing the Wheel”: A Novel Approach to Music Player Interfaces. IEEE Transactions on Multimedia 9, 567–575 (2007)CrossRefGoogle Scholar
  112. 112.
    Pohle, T., Pampalk, E., Widmer, G.: Generating Similarity-based Playlists Using Traveling Salesman Algorithms. In: Proceedings of the 8th International Conference on Digital Audio Effects (DAFx-05), pp. 220–225. Madrid, Spain (2005)Google Scholar
  113. 113.
    Popescu, G., Pu, P.: Probabilistic game theoretic algorithms for group recommender systems. In: Proceedings of the 2nd Workshop on Music Recommendation and Discovery (WOMRAD) (2011)Google Scholar
  114. 114.
    Ragno, R., Burges, C.J., Herley, C.: Inferring similarity between music objects with application to playlist generation. In: Proceedings of the 7th ACM SIGMM international workshop on Multimedia information retrieval, pp. 73–80. ACM (2005)Google Scholar
  115. 115.
    Reddy, S., Mascia, J.: Lifetrak: music in tune with your life. In: Proceedings of the 1st ACM International Workshop on Human-centered Multimedia (HCM), pp. 25–34 (2006)Google Scholar
  116. 116.
    Reed, J., Lee, C.: Preference music ratings prediction using tokenization and minimum classification error training. IEEE Trans. on Audio, Speech, and Language Processing 19(8), 2294–2303 (2011).Google Scholar
  117. 117.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)Google Scholar
  118. 118.
    Schäfer, T., Sedlmeier, P.: From the functions of music to music preference. Psychology of Music 37(3), 279–300 (2009)CrossRefGoogle Scholar
  119. 119.
    Schedl, M.: #nowplaying Madonna: A Large-Scale Evaluation on Estimating Similarities Between Music Artists and Between Movies from Microblogs. Information Retrieval (2012)Google Scholar
  120. 120.
    Schedl, M.: Ameliorating Music Recommendation: Integrating Music Content, Music Context, and User Context for Improved Music Retrieval and Recommendation. In: Proceedings of the 11th International Conference on Advances in Mobile Computing & Multimedia (MoMM 2013). Vienna, Austria (2013)Google Scholar
  121. 121.
    Schedl, M.: Leveraging Microblogs for Spatiotemporal Music Information Retrieval. In: Proceedings of the 35th European Conference on Information Retrieval (ECIR 2013). Moscow, Russia (2013)Google Scholar
  122. 122.
    Schedl, M., Flexer, A., Urbano, J.: The neglected user in music information retrieval research. Journal of Intelligent Information Systems 41, 523–539 (2013).CrossRefGoogle Scholar
  123. 123.
    Schedl, M., Pohle, T., Knees, P., Widmer, G.: Exploring the Music Similarity Space on the Web. ACM Transactions on Information Systems 29(3), 1–24 (2011)CrossRefGoogle Scholar
  124. 124.
    Schedl, M., Schnitzer, D.: Hybrid Retrieval Approaches to Geospatial Music Recommendation. In: Proceedings of the 36th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR). Dublin, Ireland (2013)Google Scholar
  125. 125.
    Schedl, M., Vall, A., Farrahi, K.: User Geospatial Context for Music Recommendation in Microblogs. In: Proceedings of the 37th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR). Gold Coast, Australia (2014)Google Scholar
  126. 126.
    Schedl, M., Widmer, G., Knees, P., Pohle, T.: A music information system automatically generated via web content mining techniques. Information Processing & Management 47(3), 426–439 (2011).CrossRefGoogle Scholar
  127. 127.
    Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proceedings of the Workshop on Mobile Computing Systems and Applications, pp. 85–90. IEEE Computer Society (1994)Google Scholar
  128. 128.
    Schindler, A., Mayer, R., Rauber, A.: Facilitating comprehensive benchmarking experiments on the million song dataset. In: Proceedings of the 13th International Society for Music Information Retrieval Conference (ISMIR 2012). Porto, Portugal (2012)Google Scholar
  129. 129.
    Shani, G., Gunawardana, A.: Evaluating recommender systems. Recommender Systems Handbook pp. 257–298 (2009).Google Scholar
  130. 130.
    Shao, B., Wang, D., Li, T., Ogihara, M.: Music recommendation based on acoustic features and user access patterns. IEEE Transactions on Audio, Speech, and Language Processing 17(8), 1602–1611 (2009)CrossRefGoogle Scholar
  131. 131.
    Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of mouth”. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 210–217 (1995)Google Scholar
  132. 132.
    Slaney, M.: Web-scale multimedia analysis: Does content matter? IEEE Multimedia 18(2), 12–15 (2011)CrossRefGoogle Scholar
  133. 133.
    Slaney, M., White, W.: Measuring playlist diversity for recommendation systems. In: 1st ACM workshop on Audio and music computing multimedia, AMCMM ‘06, pp. 77–82. ACM, New York, NY, USA (2006)Google Scholar
  134. 134.
    Slaney, M., White, W.: Similarity Based on Rating Data. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007). Vienna, Austria (2007)Google Scholar
  135. 135.
    Sordo, M., Celma, O., Blech, M., Guaus, E.: The quest for musical genres: Do the experts and the wisdom of crowds agree? In: Int. Conf. of Music Information Retrieval (ISMIR’08), pp. 255–260 (2008)Google Scholar
  136. 136.
    Stupar, A., Michel, S.: Picasso - to sing, you must close your eyes and draw. In: 34th ACM SIGIR Conf. on Research and development in Information, pp. 715–724 (2011)Google Scholar
  137. 137.
    Su, J.H., Yeh, H.H., Tseng, V.S.: A novel music recommender by discovering preferable perceptual-patterns from music pieces. In: ACM Symp. on Applied Computing (SAC’10), pp. 1924–1928 (2010)Google Scholar
  138. 138.
    Szymanski, G.: Pandora, or, a never-ending box of musical delights. Music Reference Services Quarterly 12(1), 21–22 (2009).CrossRefGoogle Scholar
  139. 139.
    Tiemann, M., Pauws, S.: Towards ensemble learning for hybrid music recommendation. In: ACM Conf. on Recommender Systems (RecSys’07), pp. 177–178 (2007)Google Scholar
  140. 140.
    Turnbull, D.R., Barrington, L., Lanckriet, G., Yazdani, M.: Combining audio content and social context for semantic music discovery. In: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pp. 387–394. ACM (2009)Google Scholar
  141. 141.
    Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans. on Speech and Audio Processing 10(5), 293–302 (2002)CrossRefGoogle Scholar
  142. 142.
    Wang, X., Rosenblum, D., Wang, Y.: Context-aware mobile music recommendation for daily activities. In: Proceedings of the 20th ACM international conference on Multimedia, pp. 99–108. ACM (2012)Google Scholar
  143. 143.
    Weigl, D., Guastavino, C.: User Studies in the Music Information Retrieval Literature. In: Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011). Miami, FL, USA (2011)Google Scholar
  144. 144.
    Weston, J., Wang, C., Weiss, R., Berenzweig, A.: Latent Collaborative Retrieval. In: Proceedings of the 29th International Conference on Machine Learning (ICML). Edinburgh, Scotland (2012)Google Scholar
  145. 145.
    Yang, D., Chen, T., Zhang, W., Lu, Q., Yu, Y.: Local implicit feedback mining for music recommendation. In: Proceedings of the 6th ACM Conference on Recommender Systems, pp. 91–98. ACM (2012)Google Scholar
  146. 146.
    Yang, Y.H., Chen, H.H.: Machine recognition of music emotion: A review. ACM Trans. Intell. Syst. Technol. 3(3), 40:1–40:30 (2012).Google Scholar
  147. 147.
    Yoshii, K., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model. IEEE Trans. on Audio, Speech, and Language Processing 16(2), 435–447 (2008).Google Scholar
  148. 148.
    Zentner, M., Grandjean, D., Scherer, K.R.: Emotions evoked by the sound of music: Characterization, classification, and measurement. Emotion 8(4), 494–521 (2008)CrossRefGoogle Scholar
  149. 149.
    Zhang, Y.C., Séaghdha, D.O., Quercia, D., Jambor, T.: Auralist: Introducing serendipity into music recommendation. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM ‘12, pp. 13–22. ACM, New York, NY, USA (2012)Google Scholar
  150. 150.
    Zheleva, E., Guiver, J., Mendes Rodrigues, E., Milić-Frayling, N.: Statistical models of music-listening sessions in social media. In: Proceedings of the 19th international conference on World wide web, WWW ‘10, pp. 1019–1028. ACM, New York, NY, USA (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Markus Schedl
    • 1
  • Peter Knees
    • 1
  • Brian McFee
    • 2
  • Dmitry Bogdanov
    • 3
  • Marius Kaminskas
    • 4
  1. 1.Department of Computational PerceptionJohannes Kepler University LinzLinzAustria
  2. 2.Center for Data ScienceNew York UniversityNew YorkUSA
  3. 3.Music Technology GroupUniversitat Pompeu FabraBarcelonaSpain
  4. 4.Insight Centre for Data AnalyticsUniversity College CorkCorkIreland

Personalised recommendations