Recommender Systems: Introduction and Challenges


Recommender Systems (RSs) are software tools and techniques that provide suggestions for items that are most likely of interest to a particular user. In this introductory chapter, we briefly discuss basic RS ideas and concepts. Our main goal is to delineate, in a coherent and structured way, the chapters included in this handbook. Additionally, we aim to help the reader navigate the rich and detailed content that this handbook offers.


Recommender System Recommendation Algorithm Recommendation Technique Recommendation List Normalize Discount Cumulative Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Personalization technologies: a process-oriented perspective. Commun. ACM 48(10), 83–90 (2005)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. 3.
    Amatriain, X.: Mining large streams of user data for personalized recommendations. SIGKDD Explor. Newsl. 14(2), 37–48 (2013)CrossRefGoogle Scholar
  4. 4.
    Arazy, O., Kumar, N., Shapira, B.: Improving social recommender systems. IT Professional 11(4), 38–44 (2009)CrossRefGoogle Scholar
  5. 5.
    Asoh, H., Ono, C., Habu, Y., Takasaki, H., Takenaka, T., Motomura, Y.: An acceptance model of recommender systems based on a large-scale internet survey. In: Advances in User Modeling - UMAP 2011 Workshops, Girona, Spain, July 11–15, 2011, Revised Selected Papers, pp. 410–414 (2011)Google Scholar
  6. 6.
    Bailey, R.A.: Design of comparative experiments. Cambridge University Press Cambridge (2008)Google Scholar
  7. 7.
    Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Communication of ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  8. 8.
    Baltrunas, L., Ricci, F.: Experimental evaluation of context-dependent collaborative filtering using item splitting. User Model. User-Adapt. Interact. 24(1–2), 7–34 (2014)CrossRefGoogle Scholar
  9. 9.
    Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisels, A., Shani, G., Naamani, L.: Recommender system from personal social networks. In: K. Wegrzyn-Wolska, P.S. Szczepaniak (eds.) AWIC, Advances in Soft Computing, vol. 43, pp. 47–55. Springer (2007)Google Scholar
  10. 10.
    Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of user models for enhanced personalization in recommender systems. User Modeling and User-Adapted Interaction 18(3), 245–286 (2008)CrossRefGoogle Scholar
  11. 11.
    Berkovsky, S., Kuflik, T., Ricci, F.: Cross-representation mediation of user models. User Modeling and User-Adapted Interaction 19(1–2), 35–63 (2009)CrossRefGoogle Scholar
  12. 12.
    Billsus, D., Pazzani, M.: Learning probabilistic user models. In: UM97 Workshop on Machine Learning for User Modeling (1997). URL
  13. 13.
    Bobadilla, J., Ortega, F., Hernando, A., Gutierrez, A.: Recommender systems survey. Knowledge-Based Systems 46(0), 109–132 (2013)CrossRefGoogle Scholar
  14. 14.
    Borràs, J., Moreno, A., Valls, A.: Intelligent tourism recommender systems: A survey. Expert Systems with Applications 41(16), 7370–7389 (2014)CrossRefGoogle Scholar
  15. 15.
    Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based recommender systems. The Knowledge Engineering review 20(3), 315–320 (2006)CrossRefGoogle Scholar
  16. 16.
    Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction 6(2–3), 87–129 (1996)CrossRefGoogle Scholar
  17. 17.
    Burke, R.: Hybrid web recommender systems. In: The Adaptive Web, pp. 377–408. Springer Berlin / Heidelberg (2007)Google Scholar
  18. 18.
    Chen, L., de Gemmis, M., Felfernig, A., Lops, P., Ricci, F., Semeraro, G.: Human decision making and recommender systems. TiiS 3(3), 17 (2013)CrossRefGoogle Scholar
  19. 19.
    Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User Model. User-Adapt. Interact. 22(1–2), 125–150 (2012)CrossRefGoogle Scholar
  20. 20.
    Cosley, D., Lam, S.K., Albert, I., Konstant, J.A., Riedl, J.: Is seeing believing? how recommender system interfaces affect users’ opinions. In: In Proceedings of the CHI 2003 Conference on Human factors in Computing Systems, pp. 585–592. Fort Lauderdale, FL (2003)Google Scholar
  21. 21.
    Ekstrand, M.D., Harper, F.M., Willemsen, M.C., Konstan, J.A.: User perception of differences in recommender algorithms. In: Eighth ACM Conference on Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014, pp. 161–168 (2014)Google Scholar
  22. 22.
    Fisher, G.: User modeling in human-computer interaction. User Modeling and User-Adapted Interaction 11, 65–86 (2001)MATHCrossRefGoogle Scholar
  23. 23.
    Golbeck, J.: Generating predictive movie recommendations from trust in social networks. In: Trust Management, 4th International Conference, iTrust 2006, Pisa, Italy, May 16–19, 2006, Proceedings, pp. 93–104 (2006)Google Scholar
  24. 24.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  25. 25.
    Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: In proceedings of ACM 2000 Conference on Computer Supported Cooperative Work, pp. 241–250 (2000)Google Scholar
  26. 26.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transaction on Information Systems 22(1), 5–53 (2004)CrossRefGoogle Scholar
  27. 27.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press (2010)Google Scholar
  28. 28.
    Kaminskas, M., Ricci, F.: Contextual music information retrieval and recommendation: State of the art and challenges. Computer Science Review 6(2–3), 89–119 (2012)CrossRefGoogle Scholar
  29. 29.
    Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explaining the user experience of recommender systems. User Modeling and User-Adapted Interaction 22(4–5), 441–504 (2012). DOI 10.1007/s11257-011-9118-4CrossRefGoogle Scholar
  30. 30.
    Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Modeling and User-Adapted Interaction 22(1–2), 101–123 (2012)CrossRefGoogle Scholar
  31. 31.
    Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  32. 32.
    Linden, G., Smith, B., York, J.: recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)Google Scholar
  33. 33.
    Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the art and trends. In: F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (eds.) Recommender Systems Handbook, pp. 73–105. Springer Verlag (2011)Google Scholar
  34. 34.
    Lu, L., Medo, M., Yeung, C.H., Zhang, Y.C., Zhang, Z.K., Zhou, T.: Recommender systems. Physics Reports 519(1), 1–49 (2012)CrossRefGoogle Scholar
  35. 35.
    Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: C. Cattuto, G. Ruffo, F. Menczer (eds.) Hypertext, pp. 73–82. ACM (2009)Google Scholar
  36. 36.
    Mahmood, T., Ricci, F., Venturini, A.: Improving recommendation effectiveness by adapting the dialogue strategy in online travel planning. International Journal of Information Technology and Tourism 11(4), 285–302 (2009)CrossRefGoogle Scholar
  37. 37.
    McFee, B., Bertin-Mahieux, T., Ellis, D.P., Lanckriet, G.R.: The million song dataset challenge. In: Proceedings of the 21st International Conference Companion on World Wide Web, WWW ’12 Companion, pp. 909–916. ACM, New York, NY, USA (2012)Google Scholar
  38. 38.
    McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pp. 1097–1101. ACM Press, New York, NY, USA (2006)Google Scholar
  39. 39.
    Montaner, M., López, B., de la Rosa, J.L.: A taxonomy of recommender agents on the internet. Artificial Intelligence Review 19(4), 285–330 (2003)CrossRefGoogle Scholar
  40. 40.
    Park, D.H., Kim, H.K., Choi, I.Y., Kim, J.K.: A literature review and classification of recommender systems research. Expert Systems with Applications 39(11), 10,059–10,072 (2012)CrossRefGoogle Scholar
  41. 41.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Proceedings ACM Conference on Computer-Supported Cooperative Work, pp. 175–186 (1994)Google Scholar
  42. 42.
    Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  43. 43.
    Ricci, F.: Travel recommender systems. IEEE Intelligent Systems 17(6), 55–57 (2002)Google Scholar
  44. 44.
    Ricci, F.: Recommender systems: Models and techniques. In: Encyclopedia of Social Network Analysis and Mining, pp. 1511–1522. Springer (2014)Google Scholar
  45. 45.
    Ricci, F., Cavada, D., Mirzadeh, N., Venturini, A.: Case-based travel recommendations. In: D.R. Fesenmaier, K. Woeber, H. Werthner (eds.) Destination Recommendation Systems: Behavioural Foundations and Applications, pp. 67–93. CABI (2006)Google Scholar
  46. 46.
    Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.): Recommendation Systems in Software Engineering. Springer (2014)Google Scholar
  47. 47.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: The Adaptive Web, pp. 291–324. Springer Berlin / Heidelberg (2007)Google Scholar
  48. 48.
    Schafer, J.B., Konstan, J.A., Riedl, J.: E-commerce recommendation applications. Data Mining and Knowledge Discovery 5(1/2), 115–153 (2001)MATHCrossRefGoogle Scholar
  49. 49.
    Schwartz, B.: The Paradox of Choice. ECCO, New York (2004)Google Scholar
  50. 50.
    van Setten, M., McNee, S.M., Konstan, J.A.: Beyond personalization: the next stage of recommender systems research. In: R.S. Amant, J. Riedl, A. Jameson (eds.) IUI, p. 8. ACM (2005)Google Scholar
  51. 51.
    Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of mouth”. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI’95), pp. 210–217 (1995)Google Scholar
  52. 52.
    Sinha, R.R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries (2001)Google Scholar
  53. 53.
    Swearingen, K., Sinha, R.: Beyond algorithms: An HCI perspective on recommender systems. In: J.L. Herlocker (ed.) Recommender Systems, papers from the 2001 ACM SIGIR Workshop. New Orleans, LA - USA (2001)Google Scholar
  54. 54.
    Taghipour, N., Kardan, A., Ghidary, S.S.: Usage-based web recommendations: a reinforcement learning approach. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, Minneapolis, MN, USA, October 19–20, 2007, pp. 113–120 (2007)Google Scholar
  55. 55.
    Verbert, K., Drachsler, H., Manouselis, N., Wolpers, M., Vuorikari, R., Duval, E.: Dataset-driven research for improving recommender systems for learning. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge, LAK ’11, pp. 44–53. ACM, New York, NY, USA (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly
  2. 2.Department of Information Systems EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations