Skip to main content

Assignment of Protein NMR Spectra Using Heteronuclear NMR—A Tutorial

  • Chapter
  • First Online:

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 32))

Abstract

The assignment of resonances in the complex nuclear magnetic resonance (NMR) spectrum of a protein is the first step in any NMR study of protein structure, function or dynamics. This chapter aims to provide a tutorial on protein NMR resonance assignment. Two approaches to the assignment are commonly used: the triple resonance methodology, which uses a suite of three-dimensional (3D) 13C/15N/1H NMR experiments, relies on through-bond 1J and 2J intra- and interresidue spin–spin couplings that are observed in 13C–15N double-labelled proteins; and the sequential assignment methodology, which can be applied to unlabelled or 15N single-labelled proteins, relies on through-bond total correlation spectroscopy (TOCSY) data to identify spin systems and through-space nuclear Overhauser effect (NOE) data to establish connections between neighbouring amino acid residues. This chapter describes both the methodologies for protein NMR resonance assignment. Examples of how sequence specific resonance assignments can be obtained using a suite of 2D and 3D NMR experiments are presented and suggestions on how overlap problems can be overcome are included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akke M, Carr PA, Palmer AG 3rd (1994) Heteronuclear-correlation NMR spectroscopy with simultaneous isotope filtration, quadrature detection, and sensitivity enhancement using z rotations. J Magn Reson Ser B 104:298–302

    Article  CAS  Google Scholar 

  • Arseniev AS, Wider G, Joubert FJ, Wüthrich K (1982) Assignment of the H-1 nuclear magnetic-resonance spectrum of the trypsin inhibitor-e from Dendroaspis-Polylepis-Polylepis two-dimensional nuclear magnetic-resonance at 500 MHz. J Mol Biol 159:323–351

    Article  CAS  PubMed  Google Scholar 

  • Aue WP, Bartholdi E, Ernst RR (1976) 2-Dimensional spectroscopy—application to nuclear magnetic-resonance. J Chem Phys 64:2229–2246

    Article  CAS  Google Scholar 

  • Bai YW, Milne JS, Mayne L, Englander SW (1993) Primary Structure Effects on Peptide Group Hydrogen-Exchange. Proteins 17:75–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartels C, Guntert P, Billeter M, Wüthrich K (1997) GARANT—a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149

    Article  CAS  Google Scholar 

  • Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR 1:99–104

    Article  CAS  PubMed  Google Scholar 

  • Bax A, Clore GM, Gronenborn AM (1990) H-1-H-1 correlation via isotropic mixing of C-13 magnetization, a new 3-Dimensional approach for assigning H-1 and C-13 spectra of C-13-enriched proteins. J Magn Reson 88:425–431

    CAS  Google Scholar 

  • Bermel W, Bruix M, Felli IC, Kumar MVV, Pierattelli R, Serrano S (2013a) Improving the chemical shift dispersion of multidimensional NMR spectra of intrinsically disordered proteins. J Biomol NMR 55:231–237

    Article  CAS  PubMed  Google Scholar 

  • Bermel W, Felli IC, Gonnelli L, Kozminski W, Piai A, Pierattelli R, Zawadzka-Kazimierczuk A (2013b) High-dimensionality C-13 direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. J Biomol NMR 57:353–361

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Jimenez B, Pierattelli R, Wedd AG, Xiao Z (2008a) Protonless C-13 direct detection NMR: Characterization of the 37 kDa trimeric protein CutA1. Proteins Struct Funct Bioinform 70:1196–1205

    Article  CAS  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Pierattelli R (2008b) Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans 29:3782–3790

    Article  PubMed  Google Scholar 

  • Billeter M, Braun W, Wüthrich K (1982) Sequential resonance assignments in protein H-1 nuclear magnetic-resonance spectra—computation of sterically allowed proton proton distances and statistical-analysis of proton–proton distances in single-crystal protein conformations. J Mol Biol 155:321–346

    Article  CAS  PubMed  Google Scholar 

  • Bodenhausen G, Ruben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189

    Article  CAS  Google Scholar 

  • Buck M, Boyd J, Redfield C, Mackenzie DA, Jeenes DJ, Archer DB, Dobson CM (1995) Structural determinants of protein dynamics—analysis of N-15 NMR relaxation measurements for main-chain and side-chain nuclei of hen egg-white lysozyme. Biochemistry 34:4041–4055

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) Protein NMR spectroscopy—principles and practice, 2nd edn. Elsevier Academic Press, Burlington

    Google Scholar 

  • Cheung MS, Maguire ML, Stevens TJ, Broadhurst RW (2010) DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J Magn Reson 202:223–233

    Article  CAS  PubMed  Google Scholar 

  • Clubb RT, Thanabal V, Wagner G (1992) A constant-time 3-Dimensional triple-resonance pulse scheme to correlate intraresidue H-1(N), N-15, and C-13(′) Chemical-Shifts in N-15-C-13-Labeled Proteins. J Magn Reson 97:213–217

    CAS  Google Scholar 

  • Connelly GP, Bai YW, Jeng MF, Englander SW (1993) Isotope effects in peptide group hydrogen-exchange. Proteins 17:87–92

    Article  CAS  PubMed  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  CAS  PubMed  Google Scholar 

  • Driscoll PC, Hill HAO, Redfield C (1987) H-1-NMR sequential assignments and cation-binding studies of spinach plastocyanin. Eur J Biochem 170:279–292

    Article  CAS  PubMed  Google Scholar 

  • Englander SW, Wand AJ (1987) Main-chain-directed strategy for the assignment of H-1-NMR spectra of proteins. Biochemistry 26:5953–5958

    Article  CAS  PubMed  Google Scholar 

  • Fesik SW, Eaton HL, Olejniczak ET, Zuiderweg ERP, Mcintosh LP, Dahlquist FW (1990) 2D and 3D NMR-spectroscopy employing C-13-C-13 magnetization transfer by isotropic mixing—spin system-identification in large proteins. J Am Chem Soc 112:886–888

    Article  CAS  Google Scholar 

  • Frenkiel T, Bauer C, Carr MD, Birdsall B, Feeney J (1990) Hmqc-Noesy-Hmqc, a 3-Dimensional NMR experiment which allows detection of nuclear overhauser effects between protons with overlapping signals. J Magn Reson 90:420–425

    CAS  Google Scholar 

  • Grzesiek S, Bax A (1992a) Improved 3D triple-resonance NMR techniques applied to a 31-Kda protein. J Magn Reson 96:432–440

    CAS  Google Scholar 

  • Grzesiek S, Bax A (1992b) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson 99:201–207

    CAS  Google Scholar 

  • Grzesiek S, Bax A (1992c) Correlating backbone amide and side-chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293

    Article  CAS  Google Scholar 

  • Grzesiek S, Bax A (1993a) Amino-acid type determination in the sequential assignment procedure of uniformly C-13/N-15-enriched proteins. J Biomol NMR 3:185–204

    CAS  PubMed  Google Scholar 

  • Grzesiek S, Bax A (1993b) The importance of not saturating H2O in protein NMR—application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594

    Article  CAS  Google Scholar 

  • Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in C-13/N-15-enriched proteins by isotropic mixing of C-13 magnetization. J Magn Reson Ser B 101:114–119

    Article  CAS  Google Scholar 

  • Herrmann T, Guntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

    Article  CAS  PubMed  Google Scholar 

  • Ikura M, Bax A, Clore GM, Gronenborn AM (1990a) Detection of nuclear overhauser effects between degenerate amide proton resonances by heteronuclear 3-Dimensional nuclear-magnetic-resonance spectroscopy. J Am Chem Soc 112:9020–9022

    Article  CAS  Google Scholar 

  • Ikura M, Kay LE, Bax A (1990b) A novel-approach for sequential assignment of H-1, C-13, and N-15 spectra of larger proteins—heteronuclear triple-resonance 3-Dimensional NMR-spectroscopy—application to calmodulin. Biochemistry 29:4659–4667

    Article  CAS  PubMed  Google Scholar 

  • Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by 2-Dimensional NMR-spectroscopy. J Chem Phys 71:4546–4553

    Article  CAS  Google Scholar 

  • Jung YS, Zweckstetter M (2004) Mars—robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  CAS  PubMed  Google Scholar 

  • Kay LE (1995) Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Bio 63:277–299

    Article  CAS  Google Scholar 

  • Kay LE, Ikura M, Bax A (1990a) Proton–proton correlation via carbon carbon couplings—a 3-Dimensional NMR approach for the assignment of aliphatic resonances in proteins labeled with C-13. J Am Chem Soc 112:888–889

    Article  CAS  Google Scholar 

  • Kay LE, Ikura M, Tschudin R, Bax A (1990b) 3-Dimensional triple-resonance NMR-spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    CAS  Google Scholar 

  • Logan TM, Olejniczak ET, Xu RX, Fesik SW (1993) A general-method for assigning NMR-spectra of denatured proteins using 3d Hc(Co)Nh-Tocsy triple resonance experiments. J Biomol NMR 3:225–231

    CAS  PubMed  Google Scholar 

  • Lyons BA, Montelione GT (1993) An hccnh triple-resonance experiment using C-13 isotropic mixing for correlating backbone amide and side-chain aliphatic resonances in isotopically enriched proteins. J Magn Reson Ser B 101:206–209

    Article  CAS  Google Scholar 

  • Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, Clore GM (1989) Overcoming the overlap problem in the assignment of H-1-NMR spectra of larger proteins by use of 3-dimensional heteronuclear H-1-N-15 hartmann-hahn multiple quantum coherence and nuclear overhauser multiple quantum coherence spectroscopy—application to interleukin-1-Beta. Biochemistry 28:6150–6156

    Article  CAS  PubMed  Google Scholar 

  • McIntosh LP, Brun E, Kay LE (1997) Stereospecific assignments of the NH2 resonances from the primary amides of asparagine and glutamine side chains in isotopically labeled proteins. J Biomol NMR 9:306–312

    Article  CAS  PubMed  Google Scholar 

  • Messerle BA, Wider G, Otting G, Weber C, Wüthrich K (1989) Solvent suppression using a spin lock in 2D and 3D NMR-spectroscopy with H2O solutions. J Magn Reson 85:608–613

    CAS  Google Scholar 

  • Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using C-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins. J Am Chem Soc 114:10974–10975

    Article  CAS  Google Scholar 

  • Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Nucl Magn Reson Biol Macromol Pt B 339:91–108

    Article  CAS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redfield C, Dobson CM (1988) Sequential H-1-NMR assignments and secondary structure of hen egg-white lysozyme in solution. Biochemistry 27:122–136

    Article  CAS  PubMed  Google Scholar 

  • Redfield C, Smith LJ, Boyd J, Lawrence GMP, Edwards RG, Smith RAG, Dobson CM (1991) Secondary structure and topology of human interleukin-4 in solution. Biochemistry 30:11029–11033

    Article  CAS  PubMed  Google Scholar 

  • Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590

    Article  CAS  Google Scholar 

  • Salzmann M, Wider G, Pervushin K, Senn H, Wüthrich K (1999) TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J Am Chem Soc 121:844–848

    Article  CAS  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Mag Res Sp 34:93–158

    Article  CAS  Google Scholar 

  • Serrano P, Pedrini B, Mohanty B, Geralt M, Herrmann T, Wüthrich K (2012) The J-UNIO protocol for automated protein structure determination by NMR in solution. J Biomol NMR 53:341–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Ca and Cb 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  CAS  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas P, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Bioinform 59:687–696

    Article  CAS  Google Scholar 

  • Vuister GW, Bax A (1993) Quantitative j correlation—a new approach for measuring homonuclear 3-Bond J(H(N)H(Alpha) coupling-constants in N-15-enriched proteins. J Am Chem Soc 115:7772–7777

    Article  CAS  Google Scholar 

  • Wang AC, Lodi PJ, Qin J, Vuister GW, Gronenborn AM, Clore GM (1994) An efficient triple-resonance experiment for proton-directed sequential backbone assignment of medium-sized proteins. J Magn Reson Ser B 105:196–198

    Article  CAS  Google Scholar 

  • Wider G, Lee KH, Wüthrich K (1982) Sequential resonance assignments in protein H-1 nuclear magnetic-resonance spectra—glucagon bound to perdeuterated dodecylphosphocholine micelles. J Mol Biol 155:367–388

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Sykes BD (1994) The C-13 chemical-shift index—a simple method for the identification of protein secondary structure using C-13 Chemical-shift data. J Biomol NMR 4:171–180

    CAS  PubMed  Google Scholar 

  • Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) H-1, C-13 and N-15 random coil NMR chemical-shifts of the common amino-acids.1. investigations of nearest-neighbor effects (Vol 5, Pg 67, 1995). J Biomol NMR 5:332–332

    CAS  PubMed  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley-Interscience, New York

    Google Scholar 

  • Wüthrich K, Wider G, Wagner G, Braun W (1982) Sequential resonance assignments as a basis for determination of spatial protein structures by high-resolution proton nuclear magnetic-resonance. J Mol Biol 155:311–319

    Article  PubMed  Google Scholar 

  • Yamazaki T, Forman-Kay JD, Kay LE (1993) 2-dimensional NMR experiments for correlating C-13-Beta and H-1-Delta/Epsilon chemical-shifts of aromatic residues in C-13-labeled proteins via scalar couplings. J Am Chem Soc 115:11054–11055

    Article  CAS  Google Scholar 

  • Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple-resonance NMR experiments for the backbone assignment of N-15, C-13, H-2 labeled proteins with high-sensitivity. J Am Chem Soc 116:11655–11666

    Article  CAS  Google Scholar 

  • Yang DW, Kay LE (1999) TROSY triple-resonance four-dimensional NMR spectroscopy of a 46 ns tumbling protein. J Am Chem Soc 121:2571–2575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Redfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Redfield, C. (2015). Assignment of Protein NMR Spectra Using Heteronuclear NMR—A Tutorial. In: Berliner, L. (eds) Protein NMR. Biological Magnetic Resonance, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7621-5_1

Download citation

Publish with us

Policies and ethics