MRI of Intracranial Atherosclerosis

  • Mark R. RadonEmail author
  • Maneesh Bhojak
  • H. Levansri D. Makalanda
  • Damiano Giuseppe Barone


Intracranial atherosclerosis is an important risk factor for stroke, one whose importance has been historically underestimated in the medical literature. Further, techniques for the diagnosis of intracranial atherosclerosis have been slow; the small size and inaccessibility of the intracranial vessels have placed technical barriers in the way of imaging the intracranial vasculature.

MRI technology has shown rapid technical progression since its introduction. In the case of intracranial imaging in general, the excellent anatomical resolution and contrast and avoidance of ionising radiation make it highly desirable when compared with CT, and its non-invasive nature makes it preferable to catheter angiography. Modern techniques and equipment are capable of the fine resolution needed to examine small vessels and other structures. Moreover, there have been impressive technical developments in techniques of physiological imaging such as diffusion and perfusion imaging.

This chapter reviews the MRI techniques available for imaging of the intracranial arteries, as well as the complication of cerebral infarction, including anatomical imaging, flow imaging (MR angiography) and physiological techniques such as cerebral perfusion imaging. The technical challenges of imaging small vessels are discussed. The technical horizon now encompasses techniques such as high-resolution vessel imaging and quantitative angiographic imaging. These are briefly reviewed.

Accurate diagnosis depends upon an understanding of the pathophysiology and patterns of disease. In this chapter, the common sites and patterns of intracranial atherosclerosis are reviewed, along with prognostic factors and the associated patterns of infarction. Finally, the most common mimics of atherosclerosis are summarised together with their key diagnostic features.


Stroke Cerebrovascular disease Internal carotid artery Middle cerebral artery Basilar artery Magnetic resonance angiography Diffusion-weighted imaging Perfusion imaging Artefact Dissection Vasculitis 


  1. 1.
    Axel L. Blood flow effects in magnetic resonance imaging. Magn Reson Annu. 1986;237–44.Google Scholar
  2. 2.
    Lee P, Oh S, Bang O, et al. Infarct patterns in atherosclerotic middle cerebral artery versus internal carotid artery disease. Neurology. 2004;62(8):1291–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Brant-Zawadzki M, Atkindson D, Detrick M, et al. Fluid attenuated inversion recovery (FLAIR) for assessment of cerebral infarction. Initial clinical experience in 50 patients. Stroke. 1996;27:1187–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Chalela J, Haymore J, Ezzeddine M, et al. The hypointense MCA sign. Neurology. 2002;58:1470.CrossRefPubMedGoogle Scholar
  5. 5.
    Stejskal E, Tanner J. Spin diffusion measurements: spin echos in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.CrossRefGoogle Scholar
  6. 6.
    Kim H, Choi C, Lee D et al. High-b-value diffusion-weighted MR imaging of hyperacute ischemic stroke at 1.5 T. AJNR. 2005;26(2):208-15.Google Scholar
  7. 7.
    Mukherjee P, Chung SW. Berman JI, et a. Diffusion tensor MR imaging and fiber tractography: technical considerations AJNR. 2008;29:843–52.PubMedGoogle Scholar
  8. 8.
    Meng X, Jun C, et al. High b-value diffusion tensor imaging of the remote white matter and white matter of obstructive unilateral cerebral arterial regions. Clin Radiol. 2013;68:815–22.CrossRefPubMedGoogle Scholar
  9. 9.
    Belliveau JW, Rosen BR, Kantor HL, et al. Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med. 1990;538–46.Google Scholar
  10. 10.
    Golay X, Petersen E. Arterial spin labeling: benefits and pitfalls of high magnetic field. Neuroimaging Clin N Am. 2006;16(2):259–68.CrossRefPubMedGoogle Scholar
  11. 11.
    Beaulieu C, de Crespigny A, Tong D, et al. Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol. 1999;46:568–78.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim H, Kim T, Ryu S, et al. Acetazolamide-challenged perfusion magnetic resonance imaging for assessment of cerebrovascular reserve capacity in patients with symptomatic middle cerebral artery stenosis: comparison with technetium-99 m-hexamethylpropyleneamine oxime single-photon emis. Clin Imaging. 2011;35:413–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Wehrli F et al. Time-of-flight MR flow imaging: selective saturation recovery with gradient refocusing. Radiology. 1987;241–246.Google Scholar
  14. 14.
    Gullberg G et al. MR Vascular imaging with a fast gradient refocusing pulse sequence and reformatted images from transaxial sections. Radiology. 1987;241–246.Google Scholar
  15. 15.
    Marchal G et al. Intracranial vascular lesions: optimization and clinical evaluation of three dimensional time-of-flight MR angiography. Radiology. 1990;443–448.Google Scholar
  16. 16.
    Pedraza S. Comparison of preperfusion and postperfusion magnetic resonance angiography in acute stroke. Stroke. 2004;2105–2110.Google Scholar
  17. 17.
    Blatter DD et al. Cerebral MR angiography with multiple overlapping thin slab acquisition. Part II. Early clinical experience. Radiology. 1992;379–389.Google Scholar
  18. 18.
    Heiserman JE et al. Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography. Radiology. 1992;185(3).Google Scholar
  19. 19.
    Stock KW, Radue EW, Jacob AL, et al. Intracranial arteries: prospective blinded comparative study of MR angiography and DSA in 50 patients. Radiology. 1995;195:451–56.CrossRefPubMedGoogle Scholar
  20. 20.
    Feldmann E. ea. The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) trial. Neurology. 2007;68(24):2099–106.CrossRefPubMedGoogle Scholar
  21. 21.
    Bash J et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR. 2005;26:1012–21.PubMedGoogle Scholar
  22. 22.
    Choi CG et al. Detection of Intracranial Atherosclerotic Steno-Occlusive Disease with 3D Time-of-Flight Magnetic Resonance Angiography with Sensitivity Encoding at 3 T. AJNR. 2007;28:439–46.CrossRefPubMedGoogle Scholar
  23. 23.
    Sadikin C et al. The current role of 1.5 T non-contrast 3D time-of-flight magnetic resonance angiography to detect intracranial steno-occlusive disease. J Formos Med Assoc. 2007;106(9):691–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Korogi Y, Takahashi M, Nakagawa T, et al. Intracranial vascular stenosis and occlusion: MR angiographic findings. AJNR. 1997;18:135–43.PubMedGoogle Scholar
  25. 25.
    Leng X, Wong KS, Soo Y, Leung T, Zou X, et al. Magnetic Resonance Angiography Signal Intensity as a Marker of Hemodynamic Impairment in. PLoS ONE. 2013;8(11), e80124.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Zhang HL, Maki JH, Prince MR. 3D contrast enhanced MR angiography. J Magn Reson Imaging. 2007;25:13–25.CrossRefPubMedGoogle Scholar
  27. 27.
    Cashen TA, Carr JC, Shin W, et al. Intracranial time resolved contrast enhanced MR angiography at 3 T. AJNR. 2006;27:822–9.PubMedGoogle Scholar
  28. 28.
    Turski PA, Korosec FR, Carroll TJ, et al. Contrast enhanced magnetic resonance angiography of the carotid bifurcation using the time resolved imaging contrast kinetics (TRICKS) technique. Top Magn Reson Imaging. 2001;12:175–81.CrossRefPubMedGoogle Scholar
  29. 29.
    Alfke J, Jensen U, Pool C, et al. Contrast-enhanced magnetic resonance angiography in stroke diagnostics: additional information compared with time-of-flight magnetic resonance angiography? Clin Neuroradiol. 2011;21(1):5–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Medicines and Healthcare products Regulatory Agency. Gadolinium-containing contrast agents: new advice to minimise the risk of nephrogenic systemic fibrosis. [Internet]. 2010 [cited 2014 Jan]. Available from:
  31. 31.
    S. Dehkharghani JKaAMS. Improved Quality and Diagnostic Confidence Achieved by Use of dose-reduced Gadolinium Blood-Pool agents for Time-resolved intracranial MR angiography. AJNR. 2013.Google Scholar
  32. 32.
    Rohrer M. BHMJea. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths Invest Radiol. 2005;40:715–24.PubMedGoogle Scholar
  33. 33.
    Lovblad K, Yilmaz H, Chouiter A, et al. Intracranial aneurysm stenting: follow-up with MR angiography. J Magn Reson Imaging. 2006;24(2):418–22.CrossRefPubMedGoogle Scholar
  34. 34.
    Amin-Hanjani S, Du X, Zhao M, et al. Use of Quantitative Magnetic Resonance Angiography to Stratify Stroke Risk in Symptomatic Vertebrobasilar Disease. Stroke. 2005;36:1140–11475.CrossRefPubMedGoogle Scholar
  35. 35.
    Prabhakaran S, Warrior L, Wells K, et al. The utility of quantitative magnetic resonance angiography in the assessment of intracranial in-stent stenosis. Stroke. 2009;40(3):991–3.CrossRefPubMedGoogle Scholar
  36. 36.
    Ryu CW, Jahng GH, Kim EJ, et al. High resolution wall and lumen MRI of the middle cerebral arteries at 3 tesla. Cerebrovasc Dis. 2009;27(5):433–42.CrossRefPubMedGoogle Scholar
  37. 37.
    Ma N, Jiang WJ, Lou X, et al. Arterial remodeling of advanced basilar atherosclerosis: a 3-Tesla MRI study. Neurology. 2010;75:253–58.CrossRefPubMedGoogle Scholar
  38. 38.
    Xu WH, Li ML, Gao S, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis. 2010;212:507–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Klein IF, Lavallee PC, Touboul PJ, et al. In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology. 2006;67:327–29.CrossRefPubMedGoogle Scholar
  40. 40.
    Saam T, Cai J, Ma L, et al. Comparison of Symptomatic and Asymptomatic Atherosclerotic Carotid Plaque Features with in Vivo MR Imaging. Radiology. 2006;240(2):464–72.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Wintermark M, Sanelli P, Albers G, et al. Imaging Recommendations for Acute Stroke and Transient Ischemic Attack Patients: A Joint Statement by the American Society of Neuroradiology, the American College of Radiology, and the Society of NeuroInterventional Surgery. AJNR. 2013;34:E117–127.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Chung GH, Kwak HS, Hwang SB, Jin GY. High resolution MR imaging in patients with symptomatic middle cerebral artery stenosis. Eur J Radiol. 2012;81:4069–74.CrossRefPubMedGoogle Scholar
  43. 43.
    Turan TN, Bonilha L, Morgan PS, et al. Intraplaque hemorrhage in symptomatic intracranial atherosclerotic disease. J Neuroimaging. 2011;21:E159–61.CrossRefPubMedGoogle Scholar
  44. 44.
    Chimowitz MI, Lynn MJ, Derdeyn CP, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365:993–1003.PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Deryden C, Chimowitz M, Lynn M, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2014;383(9914):333–41.CrossRefGoogle Scholar
  46. 46.
    Zaidatt O, Castonguay A, Nguyen T et al. Impact of SAMMPRIS on the future of intracranial atherosclerotic disease management: polling results from the ICAD symposium at the International Stroke Conference. J Neurointerv Surg. 2013.Google Scholar
  47. 47.
    Yang W, Huang B, Liu X, et al. Reproducibility of high-resolution MRI for the middle cerebral artery plaque at 3 T. Eur J Radiol. 2014;83(1):e49–55.CrossRefPubMedGoogle Scholar
  48. 48.
    Adams HP. BBKLea. Classification of subtype of acute ischaemic stroke definitions for use in a multicentre clinical trial TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35–41.CrossRefPubMedGoogle Scholar
  49. 49.
    Ay H, Benner T, Arsava EM, Furie KL, et al. A computerized algorithm for etiologic classification of ischaemic stroke: the Causative Classification of Stroke System. Stroke. 2007;38:2979–84.CrossRefPubMedGoogle Scholar
  50. 50.
    Amarenco P, Bogousslavsky J, Caplan LR, et al. The ASCOD phenotyping of ischemic stroke (Updated ASCO Phenotyping). Cerebrovasc Dis. 2013;36(1):1–5.CrossRefPubMedGoogle Scholar
  51. 51.
    White H. BABWCea. Ischemic stroke subtype incidence among whites, blacks and Hispanics: The northern Manhattan study. Circulation. 2005;111:1327–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee LJ. KCAJea. Impact on stroke subtype diagnosis of early diffusion-weighted magnetic resonance imaging and magnetic resonance angiography Stroke. 2000;31:1081–9.PubMedGoogle Scholar
  53. 53.
    Derdeyn C, Powers W, Grubb Jr R. Hemodynamic effects of middle cerebral artery stenosis and occlusion. AJNR. 1998;19(8):1463–9.PubMedGoogle Scholar
  54. 54.
    Roederer GO. LYCAea. Is siphon disease important in predicting outcome of carotid endarterectomy? Arch Surg. 1983;10:1177–81.CrossRefGoogle Scholar
  55. 55.
    Fredericks R. TTLDTB. Implications of the angiographic string sign in carotid atherosclerosis. Stroke. 1990;21(3):476–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Gacs G, Fox A, Barnett H, Vinuela F. Occurrence and mechanisms of occlusion of the anterior cerebral artery. Stroke. 1983;14:952–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Kwon S, Cho Y, Koo J, et al. Cilostazol prevents the progression of the symptomatic intracranial arterial stenosis: the multicenter double-blind placebo controlled trial of cilostazol in symptomatic intracranial arterial stenosis. Stroke. 2005;36:782–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Lhermitte F, Gautier JC, Derouesne C, et al. Ischemic accidents in the middle cerebral artery territory: a study of the causes in 122 cases. Arch Neurol. 1968;19:248–56.CrossRefPubMedGoogle Scholar
  59. 59.
    Mazighi M, Labreuche J, Gongora-Rivera F, et al. Autopsy prevalence of intracranial atherosclerosis in patients with fatal stroke. Stroke. 2008;39:1142–47.CrossRefPubMedGoogle Scholar
  60. 60.
    Klein IF, Labreuche J, Lavallee PC, et al. Is moderate atherosclerotic stenosis in the middle cerebral artery a cause of or a coincidental finding in ischemic stroke? Cerebrovasc Dis. 2010;29:140–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Degnan AJ, Gallagher G, Teng Z, et al. MR Angiography and Imaging for the Evaluation of Middle Cerebral Artery Atherosclerotic Disease. AJNR. 2012;33:1427–35.CrossRefPubMedGoogle Scholar
  62. 62.
    Chen H, Hong H, Liu D, et al. Lesion patterns and mechanism of cerebral infarction caused by severe atherosclerotic intracranial internal carotid artery stenosis. J Neurol Sci. 2011;307(1-2):79–85.CrossRefPubMedGoogle Scholar
  63. 63.
    Min W, Park K, Kim Y, et al. Atherothrombotic middle cerebral artery territory infarction: topographic diversity with common occurrence of concomitant small cortical and subcortical infarcts. Stroke. 2000;31:2055–61.CrossRefPubMedGoogle Scholar
  64. 64.
    Caplan L, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism and ischemic stroke. Arch Neurol. 1998;55:1475–82.CrossRefPubMedGoogle Scholar
  65. 65.
    Khan M, Rasheed A, Hashmi S, et al. Stroke radiology and distinguishing characteristics of intracranial atherosclerotic disease in native South Asian Pakistanis. Stroke: Int J; 2013.Google Scholar
  66. 66.
    Adams H, Demasio H, Putman S, Demasia A. Middle cerebral artery occlusion as a cause of isolated subcortical infarction. Stroke. 1983;14:948–52.CrossRefPubMedGoogle Scholar
  67. 67.
    Hinton RC. MJARea. Symptomatic middle cerebral artery stenosis Ann neurol. 1979;5:152–7.PubMedGoogle Scholar
  68. 68.
    Adams H, Gross C. Embolism distal to stenosis of the middle cerebral artery. Stroke. 1981 Dec;228–229.Google Scholar
  69. 69.
    Ssi-Yan-Kai G, Nasr N, Faury A, et al. Intracranial Artery Stenosis or Occlusion Predicts Ischemic Recurrence after Transient Ischemic Attack. AJNR. 2013;34:185–90.CrossRefPubMedGoogle Scholar
  70. 70.
    Coutts SB, Simon JE, Eliasziw M, et al. Triaging transient ischemic attack and minor stroke patients using acute magnetic resonance imaging. Ann Neurol. 2005;57:848–54.CrossRefPubMedGoogle Scholar
  71. 71.
    Jung J, Kang D, Koo J, et al. Predictors of Recurrent Stroke in Patients With Symptomatic Intracranial Arterial Stenosis. Stroke. 2012;43:2785–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Ogata J, Masuda J, Yutani C, Yamaguchi T. Mechanisms of cerebral artery thrombosis: a histopathological analysis on eight necropsy cases. J Neurol Neurosurg Psychiatry. 1994;57:17–21.PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Chen XY, Wong KS, Lam WW, et al. Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with infarct in a postmortem study. Cerebrovasc Dis. 2008;25:74–80.CrossRefPubMedGoogle Scholar
  74. 74.
    Cho H, Roh H, Moon W, Kim H. Perforator territory infarction in the lenticulostriate arterial territory: mechanisms and lesion patterns based on the axial location. Eur Neurol. 2010;63(2):107–15.CrossRefPubMedGoogle Scholar
  75. 75.
    Voetsch B, DeWitt D, Pessin M, Caplan L. Basilar Artery Occlusive Disease in the New England Medical Center Posterior Circulation Registry. Arch Neurol. 2004;61:496–504.CrossRefPubMedGoogle Scholar
  76. 76.
    Kim J. Pure lateral medullary infarction: clinical-radiological correlation of 130 acute, consecutive patients. Barin. 2003;126:1864–72.Google Scholar
  77. 77.
    Pessin M, Daneault N, Kwan E, et al. Local embolism from vertebral artery occlusion. Stroke. 1988;19:112–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Kim J. Pure or predominantly sensory transient ischemic attacks associated with posterior cerebral artery stenosis. Cerebrovasc Dis. 2002;14:136–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Kim J, Kim J. Pure midbrain infarction: clinical, radiological and pathophysiological findings. Neurology. 2005;64:1227–32.CrossRefPubMedGoogle Scholar
  80. 80.
    Mazighi M, Tanasescu R, Ducrocq X, et al. Prospective study of symptomatic atherothrombotic intracranial stenoses: the GESICA study. Neurology. 2006;66:1187–91.CrossRefPubMedGoogle Scholar
  81. 81.
    Asil T, Balci K, Uzunca I, et al. Six-month follow-up study in patients with symptomatic intracranial arterial stenosis. J Clin Neurosci. 2006;13(9):913–6.CrossRefPubMedGoogle Scholar
  82. 82.
    Kate M, Sylaja P, Kesavadas C, Thomas B. Imaging and Clinical Predictors of Unfavorable Outcome in Medically Treated Symptomatic Intracranial Atherosclerotic Disease. J Stroke Cerebrovasc Dis. 2013.Google Scholar
  83. 83.
    Pelkonen O, Tikkakoski T, Leinonen S, et al. Intracranial arterial dissection. Neuroradiology. 1998;40:442–7.CrossRefPubMedGoogle Scholar
  84. 84.
    Yonas H, Agamanolid S, Takaoka Y, White R. Dissecting intracranial aneurysms. Surg Neurol. 1977;8:407–15.PubMedGoogle Scholar
  85. 85.
    Wiszniewska M, Devuys G, Bogousslavsky J. Giant cell arteritis as a cause of first-ever stroke. Cerebrovasc Dis. 2007;24(2-3):226–30.CrossRefPubMedGoogle Scholar
  86. 86.
    Alhalabi M, Moore P. Serial angiography in isolated angiitis of the central nervous system. Neurology. 1994;44(7):1221–6.CrossRefPubMedGoogle Scholar
  87. 87.
    Cantu C, Pineda C, Baringarrementeria F, et al. Noninvasive cerebrovascular assessment of Takayasu arteritis. Stroke. 2000;31(9):2197–202.CrossRefPubMedGoogle Scholar
  88. 88.
    Scott R, Smith E. Moyamoya disease and Moyamoya syndrome. N Engl J Med. 2009;360:1226–37.CrossRefPubMedGoogle Scholar
  89. 89.
    Kim Y, Lee D, Kwon J, et al. High resolution MRI difference between Moyamoya disease and intracranial atherosclerosis. Eur J Neurol. 2013;20(9):1311–8.CrossRefPubMedGoogle Scholar
  90. 90.
    Kang J, Kwon S, Kim J. Radiation induced angiopathy in acute stroke patients. J Stroke Cerebrovasc Dis. 2002;11:315–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Calabrese L, Dodick D. Schwedt. Singhal A Narrative review: reversible cerebral vasoconstriction syndromes Ann Intern Med. 2007;146:34–44.PubMedGoogle Scholar
  92. 92.
    Kaye B, Fainstat M. Cerebral vasculitis associated with cocaine abuse. JAMA. 1987;258:2104–6.CrossRefPubMedGoogle Scholar
  93. 93.
    Korogi Y, Takahashi M, Mabuchi N, et al. Intracranial vascular stenosis and occlusion: diagnostic accuracy of three-dimensional, Fourier transform, time-of-flight MR angiography. Radiology. 1994;193:187–93.CrossRefPubMedGoogle Scholar
  94. 94.
    Yasaka M, Yamaguchi T, Shichiri M. Distribution of Atherosclerosis and Risk Factors in Atherothrombotic Occlusion. Stroke. 1993;24:206–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mark R. Radon
    • 1
    Email author
  • Maneesh Bhojak
    • 1
  • H. Levansri D. Makalanda
    • 2
  • Damiano Giuseppe Barone
    • 3
  1. 1.Department of NeuroradiologyThe Walton Centre Foundation TrustLiverpoolUK
  2. 2.Department of NeuroradiologyRoyal London HospitalLondonUK
  3. 3.Department of NeurosurgeryThe Walton Centre Foundation TrustLiverpoolUK

Personalised recommendations