Skip to main content

Cardiovascular Magnetic Resonance Imaging of Coronary Arteries

  • Chapter
3D Imaging Technologies in Atherosclerosis

Abstract

Cardiovascular magnetic resonance (CMR) imaging is a safe, noninvasive, and radiation-free modality that provides clinically important information about patients with coronary artery disease (CAD), including cardiac anatomy, function, viability, and perfusion. However, the application of CMR for performing coronary angiography remains challenging as cardiac and respiratory motion need to be accounted for in small and often tortuous coronary artery vessels. In the last two decades novel techniques have been developed to enable and optimize the imaging of coronary artery lumen and vessel wall using CMR. Currently, these techniques are used clinically for a range of specific cardiac applications whilst the widespread use in patients with coronary artery disease is still under investigation. This chapter focuses on the use of CMR for the imaging of coronary arteries in patients with suspected or known CAD or other coronary anomalies.

Dr. Rudd is part-supported by the NIHR Cambridge Biomedical Research Centre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perk J, De Backer G, Gohlke H, et al. The fifth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice. Eur Heart J. 2012;33:1635–701.

    Article  CAS  PubMed  Google Scholar 

  2. Global status report on non-communicable diseases 2010. Geneva, World Health Organization, 2011

    Google Scholar 

  3. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3, e442.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933–44.

    Article  PubMed  Google Scholar 

  5. Chiribiri A, Ishida M, Nagel E, Botnar RM. Coronary imaging with cardiovascular magnetic resonance: current state of the art. Prog Cardiovasc Dis. 2011;54:240–52.

    Article  PubMed  Google Scholar 

  6. Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bashore TM, Balter S, Barac A, et al. 2012 American College of Cardiology Foundation/Society for Cardiovascular Angiography and Interventions expert consensus document on cardiac catheterization laboratory standards update: a report of the American College of Cardiology Foundation Task Force on Expert Consensus documents developed in collaboration with the Society of Thoracic Surgeons and Society for Vascular Medicine. J Am Coll Cardiol. 2012;59:2221–305.

    Article  PubMed  Google Scholar 

  8. Efstathopoulos EP, Pantos I, Thalassinou S, Argentos S, Kelekis NL, Zograpfos T, Panayiotakis G, Katritsis DG. Patients radiation doses in Cardiac Computed Tomography: comparison of published results with prospective and retrospective acquisition. Radiat Prot Dosimetry. 2011;148:83–91.

    Article  PubMed  Google Scholar 

  9. Huda W, Schoepf UJ, Abro JA, Mah E, Costello P. Radiation-related cancer risk in a clinical patient population undergoing cardiac CT. Am J Roentgenol. 2011;196:159–65.

    Article  Google Scholar 

  10. Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, Crowe T, Howard G, Cooper CJ, Brodie B, Grines CL, DeMaria AN. REVERSAL Investigators. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291:1071–80.

    Article  CAS  PubMed  Google Scholar 

  12. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation. 1999;99:3139–48.

    Article  CAS  PubMed  Google Scholar 

  13. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenosis. N Engl J Med. 2001;345:1863–9.

    Article  CAS  PubMed  Google Scholar 

  14. Paulin S, von Schulthess GK, Fossel E, Krayenbuehl HP. MR imaging of the aortic root and proximal coronary arteries. AJR Am J Roentgenol. 1987;148:665–70.

    Article  CAS  PubMed  Google Scholar 

  15. Edelman RR, Manning WJ, Burstein D, Paulin S. Coronary arteries: breath-hold MR angiography. Radiology. 1991;181:641–3.

    Article  CAS  PubMed  Google Scholar 

  16. Uribe S, Hussain T, Valverde I, et al. Congenital heart disease in children: coronary MR angiography during systole and diastole with dual cardiac phase whole-heart imaging. Radiology. 2011;260:232–40.

    Article  PubMed  Google Scholar 

  17. Kim WY, Stuber M, Kissinger KV, et al. Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. J Magn Reson Imaging. 2001;14:383–90.

    Article  CAS  PubMed  Google Scholar 

  18. Jahnke C, Paetsch I, Nehrke K, et al. A new approach for rapid assessment of the cardiac rest period for coronary MRA. J Cardiovasc Magn Reson. 2005;7:395–9.

    Article  PubMed  Google Scholar 

  19. Tangcharoen T, Jahnke C, Koehler U, et al. Impact of heart rate variability in patients with normal sinus rhythm on image quality in coronary magnetic angiography. J Magn Reson Imaging. 2008;28:74–9.

    Article  PubMed  Google Scholar 

  20. Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989;173:255–63.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 1995;33:713–9.

    Article  CAS  PubMed  Google Scholar 

  22. Danias PG, Stuber M, Botnar RM, et al. Relationship between motion of coronary arteries and diaphragm during free breathing: lessons from real-time MR imaging. AJR Am J Roentgenol. 1999;172:1061–5.

    Article  CAS  PubMed  Google Scholar 

  23. Nagel E, Bornstedt A, Schnackenburg B, et al. Optimization of realtime adaptive navigator correction for 3D magnetic resonance coronary angiography. Magn Reson Med. 1999;42:408–11.

    Article  CAS  PubMed  Google Scholar 

  24. Huber S, Bornstedt A, Schnackenburg B, et al. The impact of different positions and thoracial restrains on respiratory induced cardiac motion. J Cardiovasc Magn Reson. 2006;8:483–8.

    Article  PubMed  Google Scholar 

  25. Sakuma H, Ichikawa Y, Chino S, et al. Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol. 2006;48:1946–50.

    Article  PubMed  Google Scholar 

  26. Edelman RR, Manning WJ, Burstein D, Paulin S. Coronary arteries: breath-hold MR angiography. Radiology. 1991;181:641–3.

    Article  CAS  PubMed  Google Scholar 

  27. Manning WJ, Li W, Boyle NG, Edelman RR. Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation. 1993;87:94–104.

    Article  CAS  PubMed  Google Scholar 

  28. Li D, Paschal CB, Haacke EM, Adler LP. Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology. 1993;187:401–6.

    Article  CAS  PubMed  Google Scholar 

  29. Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared t2 contrast. Magn Reson Med. 1995;33:689–96.

    Article  CAS  PubMed  Google Scholar 

  30. Regenfus M, Ropers D, Achenbach S, Kessler W, Laub G, Daniel WG, et al. Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol. 2000;36:44–50.

    Article  CAS  PubMed  Google Scholar 

  31. Makowski MR, Wiethoff AJ, Uribe S, et al. Congenital heart disease: cardiovascular MR imaging by using an intravascular blood pool contrast agent. Radiology. 2011;260:680–8.

    Article  PubMed  Google Scholar 

  32. Laurent S, Elst LV, Muller RN. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging. 2006;1:128–37.

    Article  CAS  PubMed  Google Scholar 

  33. Goldfarb JW, Edelman RR. Coronary arteries: breath-hold, gadolinium-enhanced, three-dimensional MR angiography. Radiology. 1998;206:830–4.

    Article  CAS  PubMed  Google Scholar 

  34. Stuber M, Botnar RM, Danias PG, et al. Contrast agent–enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging. 1999;10:790–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hussain T, Fenton M, Peel SA, et al. Detection and grading of coronary allograft vasculopathy in children with contrast enhanced magnetic resonance imaging of the coronary vessel wall. Circ Cardiovasc Imaging. 2013;8:66–70.

    Google Scholar 

  36. Greil GF, Seeger A, Miller S, et al. Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatr Radiol. 2007;37:666–73.

    Article  PubMed  Google Scholar 

  37. Greil GF, Stuber M, Botnar RM, et al. Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation. 2002;105:908–11.

    Article  PubMed  Google Scholar 

  38. Mavrogeni S, Papadopoulos G, Hussain T, Chiribiri A, Botnar R, Greil GF. The emerging role of cardiovascular magnetic resonance in the evaluation of Kawasaki disease. Int J Cardiovasc Imaging. 2013;29(8):1787–98.

    Article  PubMed  Google Scholar 

  39. Chiribiri A, Botnar RM, Nagel E. Magnetic resonance angiography: where are we today? Curr Cardiol Rep. 2013;15:328.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Tangcharoen T, Bell A, Hegde S, et al. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology. 2011;259:240–7.

    Article  PubMed  Google Scholar 

  41. Galjee MA, van Rossum AC, Doesburg T, et al. Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study. Circulation. 1996;93:660–6.

    Article  CAS  PubMed  Google Scholar 

  42. Vrachliotis TG, Bis KG, Aliabadi D, et al. Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass grafts. AJR Am J Roentgenol. 1997;168:1073–80.

    Article  CAS  PubMed  Google Scholar 

  43. Rubinstein RI, Askenase AD, Thickman D, et al. Magnetic resonance imaging to evaluate patency of aortocoronary bypass grafts. Circulation. 1987;76:786–91.

    Article  CAS  PubMed  Google Scholar 

  44. Assomull RG, Shakespeare C, Kalra PR, et al. Role of cardiovascular magnetic resonance as a gatekeeper to invasive coronary angiography in patients presenting with heart failure of unknown etiology. Circulation. 2011;124:1351–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Vassiliou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vassiliou, V., Rudd, J.H.F., Botnar, R., Greil, G. (2015). Cardiovascular Magnetic Resonance Imaging of Coronary Arteries. In: Trivedi, R., Saba, L., Suri, J. (eds) 3D Imaging Technologies in Atherosclerosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7618-5_8

Download citation

Publish with us

Policies and ethics