CT Imaging of Intracranial Vessels

  • Sandra A. Cornelissen
  • Marco Das
  • Alida A. PostmaEmail author


In the last 20 years, CT evolved from single-slice scanning towards multidetector-row CT (MDCT). Technical advances in MDCT have increasingly improved spatial and temporal resolution. Fast volume coverage within a few seconds has nowadays become possible, allowing vessel imaging of the whole body. CT angiography (CTA) has become a valuable noninvasive alternative to cerebral digital subtraction angiography (DSA) for diagnosing pathology of intracranial vessels.Because acquired MDCT data are nowadays nearly isotropic, various image post-processing techniques can be applied. For detection of intracranial aneurysms, CTA has largely replaced DSA as the first-line imaging modality.New applications like dynamic CTA and dual-energy CT (DECT) are emerging and are more and more used in daily practice.This chapter aims to give an update on state-of-the-art CT imaging of intracranial vessels. The anatomy of the intracranial vessels and some anatomical variations are described first. This is followed by technical aspects of CT imaging of the intracranial vessels. Finally, indications and protocols for imaging of the intracranial arteries and vein vessels are described.


Digital Subtraction Angiography Brain Death Posterior Cerebral Artery Reversible Cerebral Vasoconstriction Syndrome Intracranial Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dynamic time-resolved CTA


Anterior cerebral artery


Anterior communicating artery


Basilar artery


Contrast-enhanced CT


CT angiography


CT venography


Digital subtraction angiography


Diffusion-weighted imaging


Internal carotid artery


Middle cerebral artery


Multidetector CT


Maximum intensity projection


Multiplanar reformations


MR angiography


Non-contrast-enhanced CT


Posterior cerebral artery


Posterior communicating artery


Reversible cerebral vasoconstriction syndrome


Transcranial Doppler


Vertebral artery


Volume perfusion CTVR Volume rendering



Special thanks to Annika Stadler, Paul Hofman, and Christianne Hoeberigs for their valuable comments on the manuscript.


  1. 1.
    Lu L, Zhang LJ, Poon CS, et al. Digital subtraction CT angiography for detection of intracranial aneurysms: comparison with three-dimensional digital subtraction angiography. Radiology. 2012;262:605–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Guyton AC, Hall JE. Textbook of medical physiology. Philadelphia: W.B. Saunders Company; 1996.Google Scholar
  3. 3.
    Uchino A, Sawada A, Takase Y, Kudo S. MR angiography of anomalous branches of the internal carotid artery. AJR Am J Roentgenol. 2003;181:1409–14.PubMedCrossRefGoogle Scholar
  4. 4.
    Chapman PR, Gaddamanugu S, Bag AK, Roth NT, Vattoth S. Vascular lesions of the central skull base region. Semin Ultrasound CT MR. 2013;34:459–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Iqbal S. A comprehensive study of the anatomical variations of the circle of Willis in adult human brains. J Clin Diagn Res. 2013;7:2423–7.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Li Q, Li J, Lv F, Li K, Luo T, Xie P. A multidetector CT angiography study of variations in the circle of Willis in a Chinese population. J Clin Neurosci. 2011;18:379–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Grossman R, Youssem D. Neuroradiology: the requisites. 2nd ed. St. Louis, MO: Mosby; 2003.Google Scholar
  8. 8.
    Dimmick SJ, Faulder KC. Normal variants of the cerebral circulation at multidetector CT angiography. Radiographics. 2009;29:1027–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Okahara M, Kiyosue H, Mori H, Tanoue S, Sainou M, Nagatomi H. Anatomic variations of the cerebral arteries and their embryology: a pictorial review. Eur Radiol. 2002;12:2548–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Sanders WP, Sorek PA, Mehta BA. Fenestration of intracranial arteries with special attention to associated aneurysms and other anomalies. AJNR Am J Neuroradiol. 1993;14:675–80.PubMedGoogle Scholar
  11. 11.
    Uchino A, Saito N, Okada Y, et al. Fenestrations of the intracranial vertebrobasilar system diagnosed by MR angiography. Neuroradiology. 2012;54:445–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Komiyama M, Nakajima H, Nishikawa M, Yasui T. Middle cerebral artery variations: duplicated and accessory arteries. AJNR Am J Neuroradiol. 1998;19:45–9.PubMedGoogle Scholar
  13. 13.
    Osborn AG. Diagnostic cerebral angiography. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 1998.Google Scholar
  14. 14.
    Uchino A, Saito N, Okada Y, et al. Persistent trigeminal artery and its variants on MR angiography. Surg Radiol Anat. 2012;34:271–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Saltzman GF. Patent primitive trigeminal artery studied by cerebral angiography. Acta Radiol. 1959;51:329–36.PubMedCrossRefGoogle Scholar
  16. 16.
    Morris P. Practical neuroangiography. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 2007.Google Scholar
  17. 17.
    Oelerich M, Schuierer G. Primitive hypoglossal artery: demonstration with digital subtraction-, MR- and CT angiography. Eur Radiol. 1997;7:1492–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Pekcevik Y, Pekcevik R. Variations of the cerebellar arteries at CT angiography. Surg Radiol Anat. 2013;36(5):455–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Chng SM, Alvarez H, Marsot-Dupuch K, Mercier P, Lasjaunias P. “Duplicated” or “multiple” cervical internal carotid and vertebral arteries from fenestration, duplication and vasa vasorum to segmental rete. Interv Neuroradiol. 2004;10:301–7.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Fleischmann D. How to design injection protocols for multiple detector-row CT angiography (MDCTA). Eur Radiol. 2005;15 Suppl 5:E60–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Mihl C, Wildberger JE, Jurencak T, et al. Intravascular enhancement with identical iodine delivery rate using different iodine contrast media in a circulation phantom. Invest Radiol. 2013;48:813–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Kok M, Mihl C, Mingels AA, et al. Influence of contrast media viscosity and temperature on injection pressure in computed tomographic angiography: a phantom study. Invest Radiol. 2014;49(4):217–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Khandelwal N, Agarwal A, Kochhar R, et al. Comparison of CT venography with MR venography in cerebral sinovenous thrombosis. AJR Am J Roentgenol. 2006;187:1637–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Ozsvath RR, Casey SO, Lustrin ES, Alberico RA, Hassankhani A, Patel M. Cerebral venography: comparison of CT and MR projection venography. AJR Am J Roentgenol. 1997;169:1699–707.PubMedCrossRefGoogle Scholar
  25. 25.
    Majoie CB, van Straten M, Venema HW, den Heeten GJ. Multisection CT venography of the dural sinuses and cerebral veins by using matched mask bone elimination. AJNR Am J Neuroradiol. 2004;25:787–91.PubMedGoogle Scholar
  26. 26.
    Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Coursey CA, Nelson RC, Boll DT, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics. 2010;30:1037–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The essential physics of medical imaging. Philadelphia: Lippincott Williams and Wilkins; 2002.Google Scholar
  29. 29.
    Postma AA, Hofman PA, Stadler AA, van Oostenbrugge RJ, Tijssen MP, Wildberger JE. Dual-energy CT of the brain and intracranial vessels. AJR Am J Roentgenol. 2012;199:S26–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Tijssen MP, Hofman PA, Stadler AA, et al. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur Radiol. 2013;24(4):834–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Morhard D, Ertl L, Gerdsmeier-Petz W, Ertl-Wagner B, Schulte-Altedorneburg G. Dual-energy CT immediately after endovascular stroke intervention: prognostic implications. Cardiovasc Intervent Radiol. 2013;37(5):1171–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Phan CM, Yoo AJ, Hirsch JA, Nogueira RG, Gupta R. Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. AJNR Am J Neuroradiol. 2012;33:1088–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim SJ, Lim HK, Lee HY, et al. Dual-energy CT in the evaluation of intracerebral hemorrhage of unknown origin: differentiation between tumor bleeding and pure hemorrhage. AJNR Am J Neuroradiol. 2012;33:865–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Stolzmann P, Winklhofer S, Schwendener N, Alkadhi H, Thali MJ, Ruder TD. Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol. 2013;9:327–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Nicolaou S, Liang T, Murphy DT, Korzan JR, Ouellette H, Munk P. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol. 2012;199:S78–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Apfaltrer P, Sudarski S, Schneider D, et al. Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol. 2014;83:322–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Sudarski S, Apfaltrer P, Nance W, et al. Optimization of keV-settings in abdominal and lower extremity dual-source dual-energy CT angiography determined with virtual monoenergetic imaging. Eur J Radiol. 2013;82:e574–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Bahner ML, Bengel A, Brix G, Zuna I, Kauczor HU, Delorme S. Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol. 2005;40:229–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Cho ES, Chung TS, Oh DK, et al. Cerebral computed tomography angiography using a low tube voltage (80 kVp) and a moderate concentration of iodine contrast material: a quantitative and qualitative comparison with conventional computed tomography angiography. Invest Radiol. 2012;47:142–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Lell MM, Ruehm SG, Kramer M, et al. Cranial computed tomography angiography with automated bone subtraction: a feasibility study. Invest Radiol. 2009;44:38–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Gratama van Andel HA, Venema HW, Streekstra GJ, et al. Removal of bone in CT angiography by multiscale matched mask bone elimination. Med Phys. 2007;34:3711–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Morhard D, Fink C, Graser A, Reiser MF, Becker C, Johnson TR. Cervical and cranial computed tomographic angiography with automated bone removal: dual energy computed tomography versus standard computed tomography. Invest Radiol. 2009;44:293–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang LJ, Wu SY, Poon CS, et al. Automatic bone removal dual-energy CT angiography for the evaluation of intracranial aneurysms. J Comput Assist Tomogr. 2010;34:816–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Watanabe Y, Uotani K, Nakazawa T, et al. Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography. Eur Radiol. 2009;19:1019–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Menon BK, Smith EE, Coutts SB, et al. Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol. 2013;74:241–8.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Willems PW, Taeshineetanakul P, Schenk B, Brouwer PA, Terbrugge KG, Krings T. The use of 4D-CTA in the diagnostic work-up of brain arteriovenous malformations. Neuroradiology. 2012;54:123–31.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Frolich AM, Wolff SL, Psychogios MN, et al. Time-resolved assessment of collateral flow using 4D CT angiography in large-vessel occlusion stroke. Eur Radiol. 2014;24(2):390–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Ono Y, Abe K, Suzuki K, et al. Usefulness of 4D-CTA in the detection of cerebral dural sinus occlusion or stenosis with collateral pathways. Neuroradiol J. 2013;26:428–38.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang H, Ye X, Gao X, Zhou S, Lin Z. The diagnosis of arteriovenous malformations by 4D-CTA: a clinical study. J Neuroradiol. 2013;41:117–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Frolich AM, Psychogios MN, Klotz E, Schramm R, Knauth M, Schramm P. Angiographic reconstructions from whole-brain perfusion CT for the detection of large vessel occlusion in acute stroke. Stroke. 2012;43:97–102.PubMedCrossRefGoogle Scholar
  51. 51.
    Beijer TR, van Dijk EJ, de Vries J, Vermeer SE, Prokop M, Meijer FJ. 4D-CT angiography differentiating arteriovenous fistula subtypes. Clin Neurol Neurosurg. 2013;115:1313–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Fujiwara H, Momoshima S, Akiyama T, Kuribayashi S. Whole-brain CT digital subtraction angiography of cerebral dural arteriovenous fistula using 320-detector row CT. Neuroradiology. 2013;55:837–43.PubMedCrossRefGoogle Scholar
  53. 53.
    Willems PW, Brouwer PA, Barfett JJ, terBrugge KG, Krings T. Detection and classification of cranial dural arteriovenous fistulas using 4D-CT angiography: initial experience. AJNR Am J Neuroradiol. 2011;32:49–53.PubMedGoogle Scholar
  54. 54.
    Frolich AM, Schrader D, Klotz E, et al. 4D CT angiography more closely defines intracranial thrombus burden than single-phase CT angiography. AJNR Am J Neuroradiol. 2013;34:1908–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Smit EJ, Vonken EJ, van Seeters T, et al. Timing-invariant imaging of collateral vessels in acute ischemic stroke. Stroke. 2013;44:2194–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Prokop M, Galanski M. Spiral and multislice computed tomography of the body. Stuttgart: Thieme; 2003.CrossRefGoogle Scholar
  57. 57.
    Gonzalez R, Hirsch J, Lev M, Schaefer P, Schwamm L. Acute ischemic stroke. 2nd ed. Heidelberg: Springer; 2011.CrossRefGoogle Scholar
  58. 58.
    Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics. 2006;26:905–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Han A, Yoon DY, Chang SK, et al. Accuracy of CT angiography in the assessment of the circle of Willis: comparison of volume-rendered images and digital subtraction angiography. Acta Radiol. 2011;52:889–93.PubMedCrossRefGoogle Scholar
  60. 60.
    van der Lugt A, Buter TC, Govaere F, Siepman DA, Tanghe HL, Dippel DW. Accuracy of CT angiography in the assessment of a fetal origin of the posterior cerebral artery. Eur Radiol. 2004;14:1627–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Marnane M, Duggan CA, Sheehan OC, et al. Stroke subtype classification to mechanism-specific and undetermined categories by TOAST, A-S-C-O, and causative classification system: direct comparison in the North Dublin population stroke study. Stroke. 2010;41:1579–86.PubMedCrossRefGoogle Scholar
  62. 62.
    Chen PH, Gao S, Wang YJ, Xu AD, Li YS, Wang D. Classifying ischemic stroke, from TOAST to CISS. CNS Neurosci Ther. 2012;18:452–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Thomas GN, Chen XY, Lin JW, et al. Middle cerebral artery stenosis increased the risk of vascular disease mortality among type 2 diabetic patients. Cerebrovasc Dis. 2008;25:261–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Gorelick P, Han J, Huang Y, Wong KSL. Epidemiology. In: Kim JS, Caplan LR, Wong KSL, editors. Intracranial atherosclerosis. West Sussex: Blackwell Publishing Ltd.; 2008. p. 33–44.Google Scholar
  65. 65.
    Qureshi AI, Feldmann E, Gomez CR, et al. Intracranial atherosclerotic disease: an update. Ann Neurol. 2009;66:730–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Mattioni A, Cenciarelli S, Biessels GJ, van Seeters T, Algra A, Ricci S. Prevalence of intracranial large artery stenosis and occlusion in patients with acute ischaemic stroke or TIA. Neurol Sci. 2013;35(3):349–55.CrossRefGoogle Scholar
  67. 67.
    Marquering HA, Nederkoorn PJ, Bleeker L, van den Berg R, Majoie CB. Intracranial carotid artery disease in patients with recent neurological symptoms: high prevalence on CTA. Neuroradiology. 2012;55:179–85.PubMedCrossRefGoogle Scholar
  68. 68.
    Chen XY, Wong KS, Lam WW, Zhao HL, Ng HK. Middle cerebral artery atherosclerosis: histological comparison between plaques associated with and not associated with infarct in a postmortem study. Cerebrovasc Dis. 2008;25:74–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Chen XY, Lam WW, Ng HK, Fan YH, Wong KS. Intracranial artery calcification: a newly identified risk factor of ischemic stroke. J Neuroimaging. 2007;17:300–3.PubMedCrossRefGoogle Scholar
  70. 70.
    Wong KSL, Caplan LR, Kim JS. Stroke mechanisms. In: Kim JS, Caplan LR, Wong KSL, editors. Intracranial atherosclerosis. West Sussex: Blackwell Publishing Ltd.; 2008. p. 33–44.Google Scholar
  71. 71.
    Bhatia R, Bal SS, Shobha N, et al. CT angiographic source images predict outcome and final infarct volume better than noncontrast CT in proximal vascular occlusions. Stroke. 2011;42:1575–80.PubMedCrossRefGoogle Scholar
  72. 72.
    Puetz V, Dzialowski I, Hill MD, Demchuk AM. The Alberta stroke program early CT score in clinical practice: what have we learned? Int J Stroke. 2009;4:354–64.PubMedCrossRefGoogle Scholar
  73. 73.
    Kucinski T. Unenhanced CT and acute stroke physiology. Neuroimaging Clin N Am. 2005;15:397–407. xi–xii.PubMedCrossRefGoogle Scholar
  74. 74.
    Duffis EJ, Jethwa P, Gupta G, Bonello K, Gandhi CD, Prestigiacomo CJ. Accuracy of computed tomographic angiography compared to digital subtraction angiography in the diagnosis of intracranial stenosis and its impact on clinical decision-making. J Stroke Cerebrovasc Dis. 2013;22:1013–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Liu Q, Huang J, Degnan AJ, et al. Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease. Int J Cardiovasc Imaging. 2013;29:1491–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Saake M, Goelitz P, Struffert T, et al. Comparison of conventional CTA and volume perfusion CTA in evaluation of cerebral arterial vasculature in acute stroke. AJNR Am J Neuroradiol. 2012;33:2068–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Hassan AE, Rostambeigi N, Chaudhry SA, et al. Combination of noninvasive neurovascular imaging modalities in stroke patients: patterns of use and impact on need for digital subtraction angiography. J Stroke Cerebrovasc Dis. 2013;22:e53–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Nguyen-Huynh MN, Wintermark M, English J, et al. How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke. 2008;39:1184–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Feldmann E, Wilterdink JL, Kosinski A, et al. The stroke outcomes and neuroimaging of intracranial atherosclerosis (SONIA) trial. Neurology. 2007;68:2099–106.PubMedCrossRefGoogle Scholar
  80. 80.
    Nambiar V, Sohn SI, Almekhlafi MA, et al. CTA collateral status and response to recanalization in patients with acute ischemic stroke. AJNR Am J Neuroradiol. 2013;35(5):884–90.PubMedCrossRefGoogle Scholar
  81. 81.
    Suzuki M, Ozaki Y, Komura S, Nakanishi A. Intracranial carotid calcification on CT images as an indicator of atheromatous plaque: analysis of high-resolution CTA images using a 64-multidetector scanner. Radiat Med. 2007;25:378–85.PubMedCrossRefGoogle Scholar
  82. 82.
    Sohn YH, Cheon HY, Jeon P, Kang SY. Clinical implication of cerebral artery calcification on brain CT. Cerebrovasc Dis. 2004;18:332–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Kassab MY, Gupta R, Majid A, et al. Extent of intra-arterial calcification on head CT is predictive of the degree of intracranial atherosclerosis on digital subtraction angiography. Cerebrovasc Dis. 2009;28:45–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Park KY, Kim YB, Moon HS, Suh BC, Chung PW. Association between cerebral arterial calcification and brachial-ankle pulse wave velocity in patients with acute ischemic stroke. Eur Neurol. 2009;61:364–70.PubMedCrossRefGoogle Scholar
  85. 85.
    Bleeker L, Marquering HA, van den Berg R, Nederkoorn PJ, Majoie CB. Semi-automatic quantitative measurements of intracranial internal carotid artery stenosis and calcification using CT angiography. Neuroradiology. 2011;54:919–27.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Pico F, Dufouil C, Levy C, et al. Longitudinal study of carotid atherosclerosis and white matter hyperintensities: the EVA-MRI cohort. Cerebrovasc Dis. 2002;14:109–15.PubMedCrossRefGoogle Scholar
  87. 87.
    Chutinet A, Biffi A, Kanakis A, Fitzpatrick KM, Furie KL, Rost NS. Severity of leukoaraiosis in large vessel atherosclerotic disease. AJNR Am J Neuroradiol. 2012;33:1591–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Prince EA, Ahn SH, Soares GM. Intra-arterial stroke management. Semin Intervent Radiol. 2013;30:282–7.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Flemming KD, Brown Jr RD. Secondary prevention strategies in ischemic stroke: identification and optimal management of modifiable risk factors. Mayo Clin Proc. 2004;79:1330–40.PubMedCrossRefGoogle Scholar
  90. 90.
    Romero JM, Artunduaga M, Forero NP, et al. Accuracy of CT angiography for the diagnosis of vascular abnormalities causing intraparenchymal hemorrhage in young patients. Emerg Radiol. 2009;16:195–201.PubMedCrossRefGoogle Scholar
  91. 91.
    Wada R, Aviv RI, Fox AJ, et al. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke. 2007;38:1257–62.PubMedCrossRefGoogle Scholar
  92. 92.
    Rizos T, Dorner N, Jenetzky E, et al. Spot signs in intracerebral hemorrhage: useful for identifying patients at risk for hematoma enlargement? Cerebrovasc Dis. 2013;35:582–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Hallevi H, Abraham AT, Barreto AD, Grotta JC, Savitz SI. The spot sign in intracerebral hemorrhage: the importance of looking for contrast extravasation. Cerebrovasc Dis. 2013;29:217–20.CrossRefGoogle Scholar
  94. 94.
    Gross BA, Frerichs KU, Du R. Sensitivity of CT angiography, T2-weighted MRI, and magnetic resonance angiography in detecting cerebral arteriovenous malformations and associated aneurysms. J Clin Neurosci. 2012;19:1093–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Gross BA, Du R. Diagnosis and treatment of vascular malformations of the brain. Curr Treat Options Neurol. 2014;16:279.PubMedCrossRefGoogle Scholar
  96. 96.
    Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65:476–83.PubMedCrossRefGoogle Scholar
  97. 97.
    Mikami T, Hirano T, Sugino T, et al. Presurgical planning for arteriovenous malformations using multidetector row CT. Neurosurg Rev. 2012;35:393–9. discussion 399–400.PubMedCrossRefGoogle Scholar
  98. 98.
    Bradac O, Charvat F, Benes V. Treatment for brain arteriovenous malformation in the 1998–2011 period and review of the literature. Acta Neurochir (Wien). 2013;155:199–209.CrossRefGoogle Scholar
  99. 99.
    Gandhi D, Chen J, Pearl M, Huang J, Gemmete JJ, Kathuria S. Intracranial dural arteriovenous fistulas: classification, imaging findings, and treatment. AJNR Am J Neuroradiol. 2012;33:1007–13.PubMedCrossRefGoogle Scholar
  100. 100.
    Cohen SD, Goins JL, Butler SG, Morris PP, Browne JD. Dural arteriovenous fistula: diagnosis, treatment, and outcomes. Laryngoscope. 2009;119:293–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee CW, Huang A, Wang YH, Yang CY, Chen YF, Liu HM. Intracranial dural arteriovenous fistulas: diagnosis and evaluation with 64-detector row CT angiography. Radiology. 2010;256:219–28.PubMedCrossRefGoogle Scholar
  102. 102.
    Mark DG, Hung YY, Offerman SR, et al. Nontraumatic subarachnoid hemorrhage in the setting of negative cranial computed tomography results: external validation of a clinical and imaging prediction rule. Ann Emerg Med. 2013;62:1–10.e11.PubMedCrossRefGoogle Scholar
  103. 103.
    Backes D, Rinkel GJ, Kemperman H, Linn FH, Vergouwen MD. Time-dependent test characteristics of head computed tomography in patients suspected of nontraumatic subarachnoid hemorrhage. Stroke. 2012;43:2115–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage. N Engl J Med. 2006;354:387–96.PubMedCrossRefGoogle Scholar
  105. 105.
    Chen W, Xing W, Peng Y, He Z, Wang C, Wang Q. Cerebral aneurysms: accuracy of 320-detector row nonsubtracted and subtracted volumetric CT angiography for diagnosis. Radiology. 2013;269:841–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Villablanca JP, Jahan R, Hooshi P, et al. Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography. AJNR Am J Neuroradiol. 2002;23:1187–98.PubMedGoogle Scholar
  107. 107.
    Pechlivanis I, Schmieder K, Scholz M, Konig M, Heuser L, Harders A. 3-Dimensional computed tomographic angiography for use of surgery planning in patients with intracranial aneurysms. Acta Neurochir (Wien). 2005;147:1045–53. discussion 1053.CrossRefGoogle Scholar
  108. 108.
    Karamessini MT, Kagadis GC, Petsas T, et al. CT angiography with three-dimensional techniques for the early diagnosis of intracranial aneurysms. Comparison with intra-arterial DSA and the surgical findings. Eur J Radiol. 2004;49:212–23.PubMedCrossRefGoogle Scholar
  109. 109.
    Machida H, Takeuchi H, Tanaka I, et al. Improved delineation of arteries in the posterior fossa of the brain by model-based iterative reconstruction in volume-rendered 3D CT angiography. AJNR Am J Neuroradiol. 2013;34:971–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Ramasundara S, Mitchell PJ, Dowling RJ. Bone subtraction CT angiography for the detection of intracranial aneurysms. J Med Imaging Radiat Oncol. 2010;54:526–33.PubMedCrossRefGoogle Scholar
  111. 111.
    Thines L, Dehdashti AR, Howard P, et al. Postoperative assessment of clipped aneurysms with 64-slice computerized tomography angiography. Neurosurgery. 2010;67:844–53. discussion 853–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Wallace RC, Karis JP, Partovi S, Fiorella D. Noninvasive imaging of treated cerebral aneurysms, Part II: CT angiographic follow-up of surgically clipped aneurysms. AJNR Am J Neuroradiol. 2007;28:1207–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Pfefferkorn T, Crassard I, Linn J, Dichgans M, Boukobza M, Bousser MG. Clinical features, course and outcome in deep cerebral venous system thrombosis: an analysis of 32 cases. J Neurol. 2009;256:1839–45.PubMedCrossRefGoogle Scholar
  114. 114.
    Leach JL, Fortuna RB, Jones BV, Gaskill-Shipley MF. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006;26 Suppl 1:S19–41. discussion S42–3.PubMedCrossRefGoogle Scholar
  115. 115.
    Bousser MG, Ferro JM. Cerebral venous thrombosis: an update. Lancet Neurol. 2007;6:162–70.PubMedCrossRefGoogle Scholar
  116. 116.
    Linn J, Pfefferkorn T, Ivanicova K, et al. Noncontrast CT in deep cerebral venous thrombosis and sinus thrombosis: comparison of its diagnostic value for both entities. AJNR Am J Neuroradiol. 2009;30:728–35.PubMedCrossRefGoogle Scholar
  117. 117.
    Masuhr F, Mehraein S, Einhaupl K. Cerebral venous and sinus thrombosis. J Neurol. 2004;251:11–23.PubMedCrossRefGoogle Scholar
  118. 118.
    Dior U, Shelef I, Joshua B, Gluck O, Puterman M. Arachnoid granulation masquerading as lateral sinus vein thrombosis. Isr Med Assoc J. 2012;14:198–9.PubMedGoogle Scholar
  119. 119.
    Choi HJ, Cho CW, Kim YS, Cha JH. Giant arachnoid granulation misdiagnosed as transverse sinus thrombosis. J Korean Neurosurg Soc. 2008;43:48–50.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE. Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol. 2000;21:74–8.PubMedGoogle Scholar
  121. 121.
    Widjaja E, Griffiths PD. Intracranial MR venography in children: normal anatomy and variations. AJNR Am J Neuroradiol. 2004;25:1557–62.PubMedGoogle Scholar
  122. 122.
    Wetzel S, Boos M, Bongartz G, Radu EW. Selection of patients for carotid thromboendarterectomy: the role of magnetic resonance angiography. J Comput Assist Tomogr. 1999;23 Suppl 1:S91–4.PubMedCrossRefGoogle Scholar
  123. 123.
    Gratama van Andel HA, van Boven LJ, van Walderveen MA, et al. Interobserver variability in the detection of cerebral venous thrombosis using CT venography with matched mask bone elimination. Clin Neurol Neurosurg. 2009;111:717–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Gupta RK, Bapuraj JR, Khandelwal N, Khurana D. Prognostic indices for cerebral venous thrombosis on CT perfusion: a prospective study. Eur J Radiol. 2014;83:185–90.PubMedCrossRefGoogle Scholar
  125. 125.
    Einhaupl K, Stam J, Bousser MG, et al. EFNS guideline on the treatment of cerebral venous and sinus thrombosis in adult patients. Eur J Neurol. 2010;17:1229–35.PubMedCrossRefGoogle Scholar
  126. 126.
    Ducros A. Reversible cerebral vasoconstriction syndrome. Lancet Neurol. 2012;11:906–17.PubMedCrossRefGoogle Scholar
  127. 127.
    Ducros A, Boukobza M, Porcher R, Sarov M, Valade D, Bousser MG. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain. 2007;130:3091–101.PubMedCrossRefGoogle Scholar
  128. 128.
    Mawet J, Boukobza M, Franc J, et al. Reversible cerebral vasoconstriction syndrome and cervical artery dissection in 20 patients. Neurology. 2013;81:821–4.PubMedCrossRefGoogle Scholar
  129. 129.
    Robert T, Kawkabani Marchini A, Oumarou G, Uske A. Reversible cerebral vasoconstriction syndrome identification of prognostic factors. Clin Neurol Neurosurg. 2013;115:2351–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Berlit P. Diagnosis and treatment of cerebral vasculitis. Ther Adv Neurol Disord. 2010;3:29–42.PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Kraemer M, Berlit P. Systemic, secondary and infectious causes for cerebral vasculitis: clinical experience with 16 new European cases. Rheumatol Int. 2010;30:1471–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Birnbaum J, Hellmann DB. Primary angiitis of the central nervous system. Arch Neurol. 2009;66:704–9.PubMedCrossRefGoogle Scholar
  133. 133.
    de Boysson H, Zuber M, Naggara O et al. Revised primary angiitis of the central nervous system: description of the first 52 adults enrolled in the french COVAC’ cohort. Arthritis Rheum 2014.Google Scholar
  134. 134.
    Kronenburg A, Braun KP, van der Zwan A, Klijn CJ. Recent advances in Moyamoya disease: pathophysiology and treatment. Curr Neurol Neurosci Rep. 2014;14:423.PubMedCrossRefGoogle Scholar
  135. 135.
    Scott RM, Smith ER. Moyamoya disease and Moyamoya syndrome. N Engl J Med. 2009;360:1226–37.PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang J, Wang J, Geng D, Li Y, Song D, Gu Y. Whole-brain CT perfusion and CT angiography assessment of Moyamoya disease before and after surgical revascularization: preliminary study with 256-slice CT. PLoS One. 2013;8:e57595.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Dupas B, Gayet-Delacroix M, Villers D, Antonioli D, Veccherini MF, Soulillou JP. Diagnosis of brain death using two-phase spiral CT. AJNR Am J Neuroradiol. 1998;19:641–7.PubMedGoogle Scholar
  138. 138.
    Frampas E, Videcoq M, de Kerviler E, et al. CT angiography for brain death diagnosis. AJNR Am J Neuroradiol. 2009;30:1566–70.PubMedCrossRefGoogle Scholar
  139. 139.
    Shankar JJ, Vandorpe R. CT perfusion for confirmation of brain death. AJNR Am J Neuroradiol. 2013;34:1175–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Sawicki M, Bohatyrewicz R, Safranow K, et al. Dynamic evaluation of stasis filling phenomenon with computed tomography in diagnosis of brain death. Neuroradiology. 2013;55:1061–9.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sandra A. Cornelissen
    • 1
  • Marco Das
    • 1
  • Alida A. Postma
    • 1
    Email author
  1. 1.Department of RadiologyMUMC+MaastrichtThe Netherlands

Personalised recommendations