Evolving Technologies in MR and PET for Imaging Atherosclerosis

  • Maciej Jakuciński
  • Karol P. BudohoskiEmail author
  • Victoria E. L. Young
  • Peter J. Kirkaptrick
  • Mirosław Ząbek
  • Leszek Królicki


Patients with carotid atherosclerosis develop symptoms most commonly due to plaque progression or rupture. Many factors influence the risk of a lesion rupturing. The degree of stenosis as seen on digital subtraction angiography does not accurately explain the associated clinical events. The term “vulnerable plaque” is used to describe plaques which have a high risk of causing symptoms. Such plaques typically have active inflammation, with features such as a thin fibrous cap overlying a large lipid-rich necrotic core, often with plaque hemorrhage. The endothelial surface of such plaques may be irregular, with endothelial denudation or ulceration. A plaque may be characterized as “vulnerable” based on morphology without necessarily causing a significant stenosis. Various means of depicting the characteristics of plaque vulnerability are available. This chapter aims to describe magnetic resonance imaging and positron emission tomography and their uses in imaging unstable carotid atherosclerosis.


Carotid atherosclerosis Magnetic resonance imaging Positron emission tomography Stroke 


  1. 1.
    Ambrose JA et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12(1):56–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Rothwell PM et al. Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet. 2003;361(9352):107–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA, 1995. 273(18): p. 1421-8.Google Scholar
  4. 4.
    Halliday A et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet. 2004;363(9420):1491–502.CrossRefPubMedGoogle Scholar
  5. 5.
    Glagov S et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316(22):1371–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Virmani R et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.CrossRefPubMedGoogle Scholar
  7. 7.
    Imparato AM, Riles TS, Gorstein F. The carotid bifurcation plaque: pathologic findings associated with cerebral ischemia. Stroke. 1979;10(3):238–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Naghavi M et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation. 2003;108(14):1664–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Naghavi M et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation. 2003;108(15):1772–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Stary HC et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92(5):1355–74.CrossRefPubMedGoogle Scholar
  11. 11.
    Stary HC et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994;89(5):2462–78.CrossRefPubMedGoogle Scholar
  12. 12.
    Takaya N et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI–initial results. Stroke. 2006;37(3):818–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Tang D et al. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions. J Biomech Eng. 2001;123(6):548–57.CrossRefPubMedGoogle Scholar
  14. 14.
    Tang TY et al. Correlation of carotid atheromatous plaque inflammation using USPIO-enhanced MR imaging with degree of luminal stenosis. Stroke. 2008;39(7):2144–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Trivedi RA et al. Identifying vulnerable carotid plaques in vivo using high resolution magnetic resonance imaging-based finite element analysis. J Neurosurg. 2007;107(3):536–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Nighoghossian N, Derex L, Douek P. The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke. 2005;36(12):2764–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Underhill HR et al. A noninvasive imaging approach to assess plaque severity: the carotid atherosclerosis score. AJNR Am J Neuroradiol. 2010;31(6):1068–75.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Garcia de Tena J. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;353(4):429–30. author reply 429–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.CrossRefPubMedGoogle Scholar
  20. 20.
    Kriszbacher I, Koppan M, Bodis J. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;353(4):429–30. author reply 429–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85(1):1–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Tawakol A et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48(9):1818–24.CrossRefPubMedGoogle Scholar
  23. 23.
    Rudd JH et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Tahara N et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48(9):1825–31.CrossRefPubMedGoogle Scholar
  25. 25.
    Lee SJ et al. Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med. 2008;49(8):1277–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Fayad ZA et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378(9802):1547–59.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Wykrzykowska J et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50(4):563–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Yuan C et al. MRI of atherosclerosis in clinical trials. NMR Biomed. 2006;19(6):636–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Kerwin WS et al. Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology. 2006;241(2):459–68.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Zhao X et al. Minimization of MR contrast weightings for the comprehensive evaluation of carotid atherosclerotic disease. Investig Radiol. 2010;45(1):36–41.CrossRefGoogle Scholar
  31. 31.
    Altaf N et al. Carotid intraplaque hemorrhage predicts recurrent symptoms in patients with high-grade carotid stenosis. Stroke. 2007;38(5):1633–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Singh N et al. Moderate carotid artery stenosis: MR imaging-depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men. Radiology. 2009;252(2):502–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Kolodgie FD et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.CrossRefPubMedGoogle Scholar
  34. 34.
    Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol. 2007;49(21):2073–80.CrossRefPubMedGoogle Scholar
  35. 35.
    Virmani R, Narula J, Farb A. When neoangiogenesis ricochets. Am Heart J. 1998;136(6):937–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Takaya N et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation. 2005;111(21):2768–75.CrossRefPubMedGoogle Scholar
  37. 37.
    Ota H et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences. Radiology. 2010;254(2):551–63.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Qiao Y et al. Identification of intraplaque hemorrhage on MR angiography images: a comparison of contrast-enhanced mask and time-of-flight techniques. AJNR Am J Neuroradiol. 2011;32(3):454–9.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Yuan C et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation. 2001;104(17):2051–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Chu B et al. Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke. 2004;35(5):1079–84.CrossRefPubMedGoogle Scholar
  41. 41.
    Moody AR et al. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. Radiology. 1998;209(2):349–55.CrossRefPubMedGoogle Scholar
  42. 42.
    Moody AR et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation. 2003;107(24):3047–52.CrossRefPubMedGoogle Scholar
  43. 43.
    Yim YJ et al. High signal intensity halo around the carotid artery on maximum intensity projection images of time-of-flight MR angiography: a new sign for intraplaque hemorrhage. J Magn Reson Imaging. 2008;27(6):1341–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Corti R et al. Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J Am Coll Cardiol. 2005;46(1):106–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Saam T et al. The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology. 2007;244(1):64–77.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhao XQ et al. MR imaging of carotid plaque composition during lipid-lowering therapy a prospective assessment of effect and time course. JACC Cardiovasc Imaging. 2011;4(9):977–86.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Lima JA et al. Statin-induced cholesterol lowering and plaque regression after 6 months of magnetic resonance imaging-monitored therapy. Circulation. 2004;110(16):2336–41.CrossRefPubMedGoogle Scholar
  48. 48.
    Yarnykh VL, Yuan C. Multislice double inversion-recovery black-blood imaging with simultaneous slice reinversion. J Magn Reson Imaging. 2003;17(4):478–83.CrossRefPubMedGoogle Scholar
  49. 49.
    Corti R et al. Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation. 2001;104(3):249–52.CrossRefPubMedGoogle Scholar
  50. 50.
    Yonemura A et al. Effect of lipid-lowering therapy with atorvastatin on atherosclerotic aortic plaques detected by noninvasive magnetic resonance imaging. J Am Coll Cardiol. 2005;45(5):733–42.CrossRefPubMedGoogle Scholar
  51. 51.
    Corti R et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation. 2002;106(23):2884–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Mani V et al. Cardiovascular magnetic resonance parameters of atherosclerotic plaque burden improve discrimination of prior major adverse cardiovascular events. J Cardiovasc Magn Reson. 2009;11:10.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Cai J et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation. 2005;112(22):3437–44.CrossRefPubMedGoogle Scholar
  54. 54.
    Cai JM et al. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106(11):1368–73.CrossRefPubMedGoogle Scholar
  55. 55.
    Saam T et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol. 2005;25(1):234–9.PubMedGoogle Scholar
  56. 56.
    Hatsukami TS et al. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation. 2000;102(9):959–64.CrossRefPubMedGoogle Scholar
  57. 57.
    Trivedi RA et al. MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo. Neuroradiology. 2004;46(9):738–43.CrossRefPubMedGoogle Scholar
  58. 58.
    Fisher M et al. Carotid plaque pathology: thrombosis, ulceration, and stroke pathogenesis. Stroke. 2005;36(2):253–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Spagnoli LG et al. Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. JAMA. 2004;292(15):1845–52.CrossRefPubMedGoogle Scholar
  60. 60.
    Redgrave JN et al. Critical cap thickness and rupture in symptomatic carotid plaques: the oxford plaque study. Stroke. 2008;39(6):1722–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Chu B et al. Magnetic [corrected] resonance imaging [corrected] features of the disruption-prone and the disrupted carotid plaque. JACC Cardiovasc Imaging. 2009;2(7):883–96.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Virmani R et al. Histopathology of carotid atherosclerotic disease. Neurosurgery. 2006;59(5 Suppl 3):S219–27. discussion S3–13.PubMedGoogle Scholar
  63. 63.
    Kampschulte A et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation. 2004;110(20):3239–44.CrossRefPubMedGoogle Scholar
  64. 64.
    Simonetti OP et al. “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology. 1996;199(1):49–57.CrossRefPubMedGoogle Scholar
  65. 65.
    Yarnykh VL, Yuan C. T1-insensitive flow suppression using quadruple inversion-recovery. Magn Reson Med. 2002;48(5):899–905.CrossRefPubMedGoogle Scholar
  66. 66.
    Tang TY et al. Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol. 2009;29(7):1001–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Bulte JW et al. Relaxometry and magnetometry of the MR contrast agent MION-46L. Magn Reson Med. 1999;42(2):379–84.CrossRefPubMedGoogle Scholar
  68. 68.
    Spuentrup E et al. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation. 2005;111(11):1377–82.CrossRefPubMedGoogle Scholar
  69. 69.
    Kaazempur-Mofrad MR et al. Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology. Ann Biomed Eng. 2004;32(7):932–46.CrossRefPubMedGoogle Scholar
  70. 70.
    Baldewsing RA et al. Finite element modeling and intravascular ultrasound elastography of vulnerable plaques: parameter variation. Ultrasonics. 2004;42(1–9):723–9.CrossRefPubMedGoogle Scholar
  71. 71.
    U-King-Im JM, Li ZY, Trivedi RA, Howarth S, Graves MJ, Kirkpatrick PJ, et al. Correlation of shear stress with carotid plaque rupture using MRI and finite element analysis. J Neurol. 2006;253(3):379–81.CrossRefPubMedGoogle Scholar
  72. 72.
    Dellinger A et al. Functionalization of gadolinium metallofullerenes for detecting atherosclerotic plaque lesions by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15:7.PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Saito H et al. Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc Dis. 2013;35(4):370–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Maciej Jakuciński
    • 1
  • Karol P. Budohoski
    • 2
    Email author
  • Victoria E. L. Young
    • 3
  • Peter J. Kirkaptrick
    • 2
  • Mirosław Ząbek
    • 1
  • Leszek Królicki
    • 1
  1. 1.Department of RadiologyMazowiecki Szpital BrodnowskiWarsawPoland
  2. 2.Division of Neurosurgery, Department of Clinical NeurosciencesAddenbrooke’s Hospital, University of CambridgeCambridgeUK
  3. 3.Department of RadiologyUniversity of CambridgeCambridgeUK

Personalised recommendations