Skip to main content

Analysis of Complex ODE Epidemic Models: Global Stability

  • Chapter
An Introduction to Mathematical Epidemiology

Part of the book series: Texts in Applied Mathematics ((TAM,volume 61))

Abstract

This chapter is concerned with mathematical analysis of complex ODE models and their global stability analysis. The chapter introduces Lyapunov function and LaSalle Theorem as tools and illustrates their use on the SEIR model. Hopf bifurcation theorem in higher dimensions is included and its use is illustrated on the SIR model with isolation. The concept of backward bifurcation is introduced and illustrated on an SEI model with standard incidence. Castillo-Chavez and Song Theorem for detecting backward bifurcation in higher dimensions is introduced and illustrated on the SEI example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Brauer and J. A. Noel, The Qualitative Theory of Ordinary Differential Equations: An Introduction, Dover Publications, Inc., New York, 1989.

    Google Scholar 

  2. C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), pp. 361–404.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Chicone, Ordinary differential equations with applications, vol. 34 of Texts in Applied Mathematics, Springer, New York, second ed., 2006.

    Google Scholar 

  4. C. V. de León, Constructions of Lyapunov functions for classics SIS, SIR and SIRS epidemic model with variable population size, Foro-Red-Mat: Revista electrónica de contenido matemático, 26 (2009).

    Google Scholar 

  5. C. V. de León and J. A. C. Hernández, Local and global stability of host–vector disease models, Foro-Red-Mat: Revista electrónica de contenido matemático, 25 (2008).

    Google Scholar 

  6. M. El Kahoui and A. Weber, Deciding Hopf bifurcations by quantifier elimination in a software-component architecture, J. Symbolic Comput., 30 (2000), pp. 161–179.

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Feng, C. Castillo-Chavez, and A. Capurro, A model for tuberculosis with exogenous reinfection, Theor. Pop, Biol., 57 (2000), pp. 235–247.

    Google Scholar 

  8. Z. Feng and H. R. Thieme, Recurrent outbreaks of childhood diseases revisited: the impact of isolation, Math. Biosci., 128 (1995), pp. 93–130.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. B. Gumel, Causes of backward bifurcations in some epidemiological models, J. Math. Anal. Appl., 395 (2012), pp. 355–365.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control, Math. Biosci., 146 (1997), pp. 15–35.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math Med Biol., 21 (2004), pp. 75–83.

    Article  MATH  Google Scholar 

  12. A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), pp. 57–60.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. N. KrasovskiÄ­, Nekotorye zadachi teorii ustoichivosti dvizheniya, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959.

    Google Scholar 

  14. J. P. LaSalle, Some extensions of Liapunov’s second method, IRE Trans., CT-7 (1960), pp. 520–527.

    MathSciNet  Google Scholar 

  15. M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), pp. 155–164.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. M. Liapunov, Stability of motion, With a contribution by V. A. Pliss and an introduction by V. P. Basov. Translated from the Russian by Flavian Abramovici and Michael Shimshoni. Mathematics in Science and Engineering, Vol. 30, Academic Press, New York, 1966.

    Google Scholar 

  17. M. Lipsitch and M. B. Murray, Multiple equilibria: tuberculosis transmission require unrealistic assumptions, Theor. Popul. Biol., 63 (2003), pp. 169–170.

    Article  Google Scholar 

  18. G. A. Ngwa, On the population dynamics of the malaria vector, Bull. Math. Biol., 68 (2006), pp. 2161–2189.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. F. Olsen, G. L. Truty, and W. M. Schaffer, Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark, Theoret. Population Biol., 33 (1988), pp. 344–370.

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), pp. 1513–1532.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. N. V. Tu, Dynamical systems, Springer-Verlag, Berlin, 1992. An introduction with applications in economics and biology.

    Google Scholar 

  22. L. Zhou and M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal. Real World Appl., 13 (2012), pp. 312–324.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martcheva, M. (2015). Analysis of Complex ODE Epidemic Models: Global Stability. In: An Introduction to Mathematical Epidemiology. Texts in Applied Mathematics, vol 61. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7612-3_7

Download citation

Publish with us

Policies and ethics