Skip to main content

Spatial Heterogeneity in Epidemiological Models

  • Chapter
An Introduction to Mathematical Epidemiology

Part of the book series: Texts in Applied Mathematics ((TAM,volume 61))

  • 7238 Accesses

Abstract

This chapter focuses on spatial heterogeneity of epidemic models. In the first part of this chapter, metapopulation epidemic modeling is discussed. Models with Lagrangian and Eulerian movement patterns are introduced and studied. In the second part of this chapter, spatial heterogeneity is modeled with diffusion. Single species model with diffusion is derived and combined with an SI epidemic model. Dirichlet, Neumann, and Mixed boundary conditions are reviewed. The SI epidemic model with diffusion is reduced to a single equation model with diffusion and studied. Equilibria and their stability are discussed. Traveling wave solutions are introduced and illustrated with the SI model. Turing instability is also introduced and illustrated on an SI model with distinct diffusion rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, in selected works of A. N. Kolmogorov, V. M. Tikhomiror, ed., Kluwer Academic Publishers, 1991, pp. 242–270.

    Google Scholar 

  2. L. J. S. Allen and R. K. Ernest, The impact of long-range dispersal on the rate of spread in population and epidemic models, in Mathematical approaches for emerging and reemerging infectious diseases: an introduction (Minneapolis, MN, 1999), vol. 125 of IMA Vol. Math. Appl., Springer, New York, 2002, pp. 183–197.

    Google Scholar 

  3. J. Arino and P. van den Driessche, A multi-city epidemic model, Math. Popul. Stud., 10 (2003), pp. 175–193.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. M. Anderson and R. M. May,, Metapopulations epidemic models. A survey, Math. Popul. Stud., 48 (2006), pp. 1–12.

    Google Scholar 

  5. C. T. Bauch and A. P. Galvani, Using network models to approximate spatial point-process models, Math. Biosci., 184 (2003), pp. 101–114.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. T. Bauch, A. P. Galvani, and D. J. D. Earn, Group interest versus self-interest in smallpox vaccination policy, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 10564–10567 (electronic).

    Google Scholar 

  7. R. S. Cantrell and C. Cosner, Spatial ecology via reaction–diffusion equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons Ltd., Chichester, 2003.

    Google Scholar 

  8. V. Capasso and K. Kunisch, A reaction–diffusion system modelling man–environment epidemics, Ann. Differential Equations, 1 (1985), pp. 1–12.

    Google Scholar 

  9. V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations, J. Theoret. Biol., 251 (2008), pp. 450–467.

    Article  MathSciNet  Google Scholar 

  10. C. Cosner, J. C. Beier, R. S. Cantrell, D. Impoinvil, L. Kapitanski, M. D. Potts, A. Troyo, and S. Ruan, The effects of human movement on the persistence of vector-borne diseases, J. Theoret. Biol., 258 (2009), pp. 550–560.

    Article  MathSciNet  Google Scholar 

  11. T. Dhirasakdanon, H. R. Thieme, and P. Van Den Driessche, A sharp threshold for disease persistence in host metapopulations, J. Biol. Dyn., 1 (2007), pp. 363–378.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. A. Fisher, The genetical theory of natural selection, Oxford,UK, 1930.

    Book  MATH  Google Scholar 

  13. J. D. Murray, E. A. Stanley, and D. L. Brown, On the spatial spread of rabies among foxes, Proc. Royal Soc. London, B, 229 (1986), pp. 111–150.

    Article  Google Scholar 

  14. R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control, Bulletin of the Entomological Society of America, (1969), p. 237–240.

    Google Scholar 

  15. Q.-X. Liu, Z. Jin, and M.-X. Liu, Spatial organization and evolution period of the epidemic model using cellular automata, Phys. Rev. E (3), 74 (2006), 031110.

    Google Scholar 

  16. A. L. Lloyd and V. A. A. Jansen, Spatiotemporal dynamics of epidemics: synchrony in metapopulation models, Math. Biosci., 188 (2004), pp. 1–16. Topics in biomathematics and related computational problems.

    Google Scholar 

  17. J. Medlock and M. Kot, Spreading disease: integro-differential equations old and new, Math. Biosci., 184 (2003), pp. 201–222.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. E. J. Newman, Spread of epidemic disease on networks, Phys. Rev. E (3), 66 (2002), 016128.

    Google Scholar 

  19. L. Rass and J. Radcliffe, Spatial deterministic epidemics, vol. 102 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  20. C. Rhodes and R. Anderson, Epidemic thresholds and vaccination in a lattice model of disease spread, Theoretical Population Biology, (1997), pp. 101–118.

    Google Scholar 

  21. I. Sazonov, M. Kelbert, and M. B. Gravenor, The speed of epidemic waves in a one-dimensional lattice of SIR models, Math. Model. Nat. Phenom., 3 (2008), pp. 28–47.

    Article  MathSciNet  Google Scholar 

  22. R. Slimi, S. El Yacoubi, E. Dumonteil, and S. Gourbière, A cellular automata model for Chagas disease, Appl. Math. Model., 33 (2009), pp. 1072–1085.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Tuncer and M. Martcheva, Analytical and numerical approaches to coexistence of strains in a two-strain SIS model with diffusion, J. Biol. Dyn., 6 (2012), pp. 406–439.

    Article  MathSciNet  Google Scholar 

  24. A. Turing, Phil. Trans. R. Soc. London, 237 (1952), pp. 37–72.

    Article  Google Scholar 

  25. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), pp. 29–48. John A. Jacquez memorial volume.

    Google Scholar 

  26. W. M. Post, D. L. De Angelis, and C. C. Travis, Endemic disease in environments with spatially heterogeneous host populations, Mathematical Biosciences, 63 (1983), pp. 289–302.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Wang, Y. Cai, M. Wu, K. Wang, and Z. Li, Complex dynamics of a reaction–diffusion epidemic model, Nonlinear Anal. Real World Appl., 13 (2012), pp. 2240–2258.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martcheva, M. (2015). Spatial Heterogeneity in Epidemiological Models. In: An Introduction to Mathematical Epidemiology. Texts in Applied Mathematics, vol 61. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7612-3_15

Download citation

Publish with us

Policies and ethics