Skip to main content

Potential Mechanisms of PTA: Oxidative Stress

  • Chapter
Post-Traumatic Arthritis

Abstract

Oxidative insults to articular cartilage during and after joint injuries have long been implicated in the pathogenesis of post-traumatic arthritis (PTA). Acute oxidant overexposure kills chondrocytes in newly injured cartilage, and chondrocytes under chronic oxidative stress display metabolic abnormalities that interfere with the synthesis and export of extracellular matrix (ECM) proteins. Concomitantly, the ATP that fuels ECM production may become scarcer as cells devote more resources to antioxidant defenses. Collectively these effects are potentially destabilizing to cartilage, but their significance in the complex pathogenesis of PTA is uncertain. Although antioxidants have shown some disease-modifying activity in animal models of PTA, relatively few studies support efficacy in humans, and those studies showing positive results are counterbalanced by others that show no effect. These equivocal findings have raised skepticism in some quarters regarding the future of antioxidants as therapies for osteoarthritis. Meanwhile, however, we have acquired better knowledge of oxidant metabolism in chondrocytes that may allow for the development of more successful interventions. In that regard, recently published work indicates that oxidative stress in chondrocytes arises as a direct consequence of mechanical overloading of cartilage. These data indicate that overloading activates a chondro-specific mechanotransduction pathway that produces intracellular oxidants in response to deformation of the cartilage ECM. The pathway is calibrated such that physiologic loading results in healthy redox balance in chondrocytes, while overloading results in oxidative stress or death. Joint overloading and overuse are major pathogenic factors in OA that were not formerly thought to be subject to pharmacologic intervention, but current knowledge suggests that drugs that inhibit the chondrocyte’s oxidant production pathway can mitigate the harm done by overloading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutipornpalangkul W, Morales NP, Harnroongroj T. Free radicals in primary knee osteoarthritis. J Med Assoc Thai. 2009;92 Suppl 6:S268–74.

    Google Scholar 

  2. Ziskoven C, et al. Oxidative stress in secondary osteoarthritis: from cartilage destruction to clinical presentation? Orthop Rev (Pavia). 2010;2(2):23.

    Article  Google Scholar 

  3. Beecher BR, et al. Antioxidants block cyclic loading induced chondrocyte death. Iowa Orthop J. 2007;27:1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Brouillette MJ, et al. Strain-dependent oxidant release in articular cartilage originates from mitochondria. Biomech Model Mechanobiol. 2014;13(3):565–72.

    Article  CAS  PubMed  Google Scholar 

  5. Goodwin W, et al. Rotenone prevents impact-induced chondrocyte death. J Orthop Res. 2010;28(8):1057–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Martin JA, et al. N-acetylcysteine inhibits post-impact chondrocyte death in osteochondral explants. J Bone Joint Surg Am. 2009;91(8):1890–7.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Carlo Jr MD, Loeser RF. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum. 2003;48(12):3419–30.

    Article  PubMed  Google Scholar 

  8. Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage. 2009;17(8):971–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Martin JA, et al. Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res. 2004;(427 Suppl):S96–103.

    Google Scholar 

  10. Asada S, et al. Hydrogen peroxide induces apoptosis of chondrocytes; involvement of calcium ion and extracellular signal-regulated protein kinase. Inflamm Res. 2001;50(1):19–23.

    Article  CAS  PubMed  Google Scholar 

  11. Asada S, et al. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm Res. 1999;48(7):399–403.

    Article  CAS  PubMed  Google Scholar 

  12. Lim HD, et al. Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J Pineal Res. 2012;53(3):225–37.

    Article  CAS  PubMed  Google Scholar 

  13. Mathy-Hartert M, et al. Reactive oxygen species downregulate the expression of pro-inflammatory genes by human chondrocytes. Inflamm Res. 2003;52(3):111–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ramakrishnan P, et al. Oxidant conditioning protects cartilage from mechanically induced damage. J Orthop Res. 2010;28(7):914–20.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Greenwald RA. Therapeutic benefits of oxygen radical scavenger treatments remain unproven. J Free Radic Biol Med. 1985;1(3):173–7.

    Article  CAS  PubMed  Google Scholar 

  16. Rosner IA, et al. A trial of intraarticular orgotein, a superoxide dismutase, in experimentally-induced osteoarthritis. J Rheumatol. 1980;7(1):24–9.

    CAS  PubMed  Google Scholar 

  17. McIlwain H, et al. Intra-articular orgotein in osteoarthritis of the knee: a placebo-controlled efficacy, safety, and dosage comparison. Am J Med. 1989;87(3):295–300.

    Article  CAS  PubMed  Google Scholar 

  18. Brand C, et al. Vitamin E is ineffective for symptomatic relief of knee osteoarthritis: a six month double blind, randomised, placebo controlled study. Ann Rheum Dis. 2001;60(10):946–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hill J, Bird HA. Failure of selenium-ace to improve osteoarthritis. Br J Rheumatol. 1990;29(3):211–3.

    Article  CAS  PubMed  Google Scholar 

  20. Wluka AE, et al. Supplementary vitamin E does not affect the loss of cartilage volume in knee osteoarthritis: a 2 year double blind randomized placebo controlled study. J Rheumatol. 2002;29(12):2585–91.

    CAS  PubMed  Google Scholar 

  21. Machtey I, Ouaknine L. Tocopherol in osteoarthritis: a controlled pilot study. J Am Geriatr Soc. 1978;26(7):328–30.

    Article  CAS  PubMed  Google Scholar 

  22. Aydogan NH, et al. The effect of arthroscopic surgery and intraarticular drug injection to the antioxidation system and lipid peroxidation at osteoarthritis of knee. Saudi Med J. 2008;29(3):397–402.

    PubMed  Google Scholar 

  23. Christensen R, Bliddal H. Is Phytalgic(R) a goldmine for osteoarthritis patients or is there something fishy about this nutraceutical? A summary of findings and risk-of-bias assessment. Arthritis Res Ther. 2010;12(1):105.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Haflah NH, et al. Palm vitamin E and glucosamine sulphate in the treatment of osteoarthritis of the knee. Saudi Med J. 2009;30(11):1432–8.

    PubMed  Google Scholar 

  25. Levy R, et al. Efficacy and safety of flavocoxid compared with naproxen in subjects with osteoarthritis of the knee—a subset analysis. Adv Ther. 2010;27(12):953–62.

    Article  CAS  PubMed  Google Scholar 

  26. Farid R, et al. Oral intake of purple passion fruit peel extract reduces pain and stiffness and improves physical function in adult patients with knee osteoarthritis. Nutr Res. 2010;30(9):601–6.

    Article  CAS  PubMed  Google Scholar 

  27. Nakasone Y, et al. Effect of a glucosamine-based combination supplement containing chondroitin sulfate and antioxidant micronutrients in subjects with symptomatic knee osteoarthritis: a pilot study. Exp Ther Med. 2011;2(5):893–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Kanzaki N, et al. Effect of a dietary supplement containing glucosamine hydrochloride, chondroitin sulfate and quercetin glycosides on symptomatic knee osteoarthritis: a randomized, double-blind, placebo-controlled study. J Sci Food Agric. 2012;92(4):862–9.

    Article  CAS  PubMed  Google Scholar 

  29. Belcaro G, et al. Variations in C-reactive protein, plasma free radicals and fibrinogen values in patients with osteoarthritis treated with Pycnogenol. Redox Rep. 2008;13(6):271–6.

    Article  CAS  PubMed  Google Scholar 

  30. Canter PH, Wider B, Ernst E. The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: a systematic review of randomized clinical trials. Rheumatology (Oxford). 2007;46(8):1223–33.

    Article  CAS  Google Scholar 

  31. Frech TM, Clegg DO. The utility of nutraceuticals in the treatment of osteoarthritis. Curr Rheumatol Rep. 2007;9(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  32. Anderson DD, et al. Is elevated contact stress predictive of post-traumatic osteoarthritis for imprecisely reduced tibial plafond fractures? J Orthop Res. 2011;29(1):33–9.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Segal NA, et al. Baseline articular contact stress levels predict incident symptomatic knee osteoarthritis development in the MOST cohort. J Orthop Res. 2009;27(12):1562–8.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Buckwalter JA, Martin JA. Sports and osteoarthritis. Curr Opin Rheumatol. 2004;16(5):634–9.

    Article  PubMed  Google Scholar 

  35. Egloff C, Hugle T, Valderrabano V. Biomechanics and pathomechanisms of osteoarthritis. Swiss Med Wkly. 2012;142:w13583.

    PubMed  Google Scholar 

  36. Segal NA, et al. Elevated tibiofemoral articular contact stress predicts risk for bone marrow lesions and cartilage damage at 30 months. Osteoarthritis Cartilage. 2012;20(10):1120–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Baars DC, Rundell SA, Haut RC. Treatment with the non-ionic surfactant poloxamer P188 reduces DNA fragmentation in cells from bovine chondral explants exposed to injurious unconfined compression. Biomech Model Mechanobiol. 2006;5(2–3):133–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kraus VB, et al. Effects of intraarticular IL1-Ra for acute anterior cruciate ligament knee injury: a randomized controlled pilot trial (NCT00332254). Osteoarthritis Cartilage. 2012;20(4):271–8.

    Article  CAS  PubMed  Google Scholar 

  39. Wolff KJ, et al. Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. J Orthop Res. 2013;31(2):191–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sauter E, et al. Cytoskeletal dissolution blocks oxidant release and cell death in injured cartilage. J Orthop Res. 2012;30(4):593–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Jang KW, Buckwalter JA, Martin JA. Inhibition of cell-matrix adhesions prevents cartilage chondrocyte death following impact injury. J Orthop Res. 2014;32(3):448–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gavriilidis C, et al. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 2013;65(2):378–87.

    Article  CAS  PubMed  Google Scholar 

  43. Carames B, et al. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis. 2012;71(4):575–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lotz M, Carames B. Autophagy: a new therapeutic target in cartilage injury and osteoarthritis. J Am Acad Orthop Surg. 2012;20(4):261–2.

    Article  PubMed  Google Scholar 

  45. Martin JA, et al. Mitochondrial electron transport and glycolysis are coupled in articular cartilage. Osteoarthritis Cartilage. 2012;20(4):323–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Vaseenon T, et al. Organ-level histological and biomechanical responses from localized osteoarticular injury in the rabbit knee. J Orthop Res. 2010;29(3):340–6.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Pires KM, et al. Treatment with a SOD mimetic reduces visceral adiposity, adipocyte death, and adipose tissue inflammation in high fat-fed mice. Obesity (Silver Spring). 2014;22(1):178–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell C. Coleman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coleman, M.C., Buckwalter, J.A., Martin, J.A. (2015). Potential Mechanisms of PTA: Oxidative Stress. In: Olson, MD, S., Guilak, PhD, F. (eds) Post-Traumatic Arthritis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7606-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7606-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7605-5

  • Online ISBN: 978-1-4899-7606-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics