Skip to main content

Quantitative fMRI

  • Chapter
  • First Online:

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 30))

Abstract

Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (MRI) has proven to be a powerful and sensitive tool for noninvasively detecting neural activity changes in the brain. However, the complex relationship between local blood flow, blood volume and oxygen metabolism that underlies the BOLD signal has proven to be problematic when comparing BOLD responses across subjects, imaging sites and time. Due to this complexity it is possible to generate similar BOLD responses with very different underlying changes in blood flow, blood volume and oxygen metabolism. Tools to quantify the BOLD signal in terms of oxidative metabolism have applications beyond improving the accuracy of functional MRI, for example in the study of pharmacological agents, ageing, or disease. The focus of this chapter is to consider how oxygen metabolism may be measured along with how it affects the BOLD signal. The calibrated BOLD technique is discussed for the measurement of changes in oxygen metabolism, as well as two promising techniques for quantifying baseline oxygen metabolism: T2 relaxation under spin tagging (TRUST) and quantitative BOLD (qBOLD). Current issues with each of these techniques are examined and future directions for this research field are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • An H, Lin W (2000) Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab 20:1225–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • An H, Lin W (2003) Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach. Magn Reson Med 50:708–716

    Article  PubMed  Google Scholar 

  • Ances BM, Leontiev O, Perthen JE, Liang C, Lansing AE, Buxton RB (2008) Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI. Neuroimage 39:1510–1521

    Article  PubMed Central  PubMed  Google Scholar 

  • Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, Buxton RB (2009) Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum Brain Mapp 30:1120–1132

    Article  PubMed Central  PubMed  Google Scholar 

  • Belliveau JW, Kennedy D, McKinstry R, Buchbinder B, Weisskoff R, Cohen M, Vevea J, Brady T, Rosen B (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  CAS  PubMed  Google Scholar 

  • Blockley NP, Francis ST, Gowland PA (2009) Perturbation of the BOLD response by a contrast agent and interpretation through a modified balloon model. Neuroimage 48:84–93

    Article  CAS  PubMed  Google Scholar 

  • Blockley NP, Driver ID, Fisher JA, Francis ST, Gowland PA (2011) Measuring venous blood volume changes during activation using hyperoxia. Magn Reson Med 59:3266–3274

    Google Scholar 

  • Bolar DS, Rosen BR, Sorensen AG, Adalsteinsson E (2011) QUantitative Imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magn Reson Med 66:1550–1562

    Google Scholar 

  • Bolar D, Sorensen A, Rosen B, Adalsteinsson E (2009) Feasibility of QUantitative Imaging of eXtraction and TIssue Consumption (QUIXOTIC) to assess functional changes in venous oxygen saturation during visual stimulus. Proceeding ISMRM 17th annual meeting, Honolulu, p 3658

    Google Scholar 

  • Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566

    Article  CAS  PubMed  Google Scholar 

  • Bremmer JP, van Berckel BNM, Persoon S, Kappelle LJ, Lammertsma AA, Kloet R, Luurtsema G, Rijbroek A, Klijn CJM, Boellaard R (2010). Day-to-day test-retest variability of CBF, CMRO(2), and OEF measurements using dynamic (15)O PET studies. Mol Imaging Biol 13(4):759–768

    Google Scholar 

  • Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG (1995) Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med 33:689–696

    Article  CAS  PubMed  Google Scholar 

  • Brown GG, Eyler Zorrilla LT, Georgy B, Kindermann SS, Wong EC, Buxton RB (2003) BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: differential relationship to global perfusion. J Cereb Blood Flow Metab 23:829–837

    Article  CAS  PubMed  Google Scholar 

  • Bulte DP, Chiarelli PA, Wise RG, Jezzard P (2007) Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab 27:69–75

    Article  PubMed  Google Scholar 

  • Buxton RB (2010) Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front Neuroenerg 2:8

    Google Scholar 

  • Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864

    Article  CAS  PubMed  Google Scholar 

  • Buxton R, Uludağ K, Dubowitz D, Liu T (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233

    Article  PubMed  Google Scholar 

  • Chen Y, Parrish TB (2009) Caffeine’s effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism. Neuroimage 44:647–652

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen JJ, Pike GB (2009) BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans. NMR in Biomed 22:1054–1062

    Google Scholar 

  • Chen JJ, Pike GB (2010) MRI measurement of the BOLD-specific flow-volume relationship during hypercapnia and hypocapnia in humans. NeuroImage 53:383–391

    Article  PubMed  Google Scholar 

  • Chiarelli PA, Bulte DP, Gallichan D, Piechnik SK, Wise R, Jezzard P (2007a) Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magn Reson Med 57:538–547

    Article  PubMed  Google Scholar 

  • Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P (2007b) A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 37:808–820

    Article  PubMed  Google Scholar 

  • Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497

    Article  PubMed Central  PubMed  Google Scholar 

  • Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95:1834–1839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, Powers WJ (2002) Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 125:595–607

    Article  PubMed  Google Scholar 

  • Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45

    Article  CAS  PubMed  Google Scholar 

  • Donahue MJ, Lu H, Jones CK, Edden RAE, Pekar JJ, van Zijl PCM (2006) Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 56:1261–1273

    Article  PubMed  Google Scholar 

  • Donahue MJ, Blicher JU, Østergaard L, Feinberg DA, MacIntosh BJ, Miller KL, Günther M, Jezzard P (2009) Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging. J Cereb Blood Flow Metab 29:1856–1866

    Article  CAS  PubMed  Google Scholar 

  • Fleisher AS PodrazaKM, Bangen KJ, Taylor C, Sherzai A, Sidhar K, Liu TT, Dale AM, Buxton RB (2009) Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk. Neurobiol Aging 30:1737–1748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A 83:1140–1144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Francis ST, Bowtell R, Gowland PA (2008) Modeling and optimization of Look-Locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume. Magn Reson Med 59:316–325

    Article  CAS  PubMed  Google Scholar 

  • Gauthier C, Madjar C, Tancredi F, Stefanovic B, Hoge R (2011) Elimination of visually evoked BOLD responses during carbogen inhalation: Implications for calibrated MRI. NeuroImage 54:1001–1011

    Google Scholar 

  • Griffeth VEM, Buxton RB (2011a) A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: Modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal. NeuroImage 58:198–212

    Google Scholar 

  • Griffeth VEM, Perthen JE, Buxton RB (2011b) Prospects for quantitative fMRI: Investigating the effects of caffeine on baseline oxygen metabolism and the response to a visual stimulus in humans. NeuroImage 57:809–816

    Google Scholar 

  • Grubb RL, Raichle ME, EichLing JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5:630–639

    Article  PubMed  Google Scholar 

  • Guo J, Wong EC (2012) Venous oxygenation mapping using velocity-selectiveexcitation and arterial nulling. Magn Reson Med 68:1458–1471

    Google Scholar 

  • Guyton AC (1991) Textbook of medical physiology, 8th edn. W. B. Saunders, Philadelphia

    Google Scholar 

  • He X, Yablonskiy DA (2007) Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med 57:115–126

    Google Scholar 

  • Herman P, Sanganahalli BG, Blumenfeld H, Hyder F (2009) Cerebral oxygen demand for short-lived and steady-state events. J Neurochem 109(Suppl 1):73–79

    Google Scholar 

  • Hillman EMC, Devor A, Bouchard MB, Dunn AK, Krauss GW, Skoch J, Bacskai BJ, Dale AM, Boas DA (2007) Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 35:89–104

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 42:849–863

    Article  CAS  PubMed  Google Scholar 

  • Jain V, Langham MC, Wehrli FW (2010) MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab 30:1598–1607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kastrup A, Krüger G, Neumann-Haefelin T, Glover GH, Moseley ME (2002) Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage 15:74–82

    Article  PubMed  Google Scholar 

  • Kida I, Rothman D, Hyder F (2007) Dynamics of changes in blood flow, volume, and oxygenation: implications for dynamic functional magnetic resonance imaging calibration. J Cereb Blood Flow Metab 27:690–696

    PubMed Central  PubMed  Google Scholar 

  • Kim T, Kim S (2006) Quantification of cerebral arterial blood volume using arterial spin labeling with intravoxel incoherent motion-sensitive gradients. Magn Reson Med 55:1047–1057

    Article  PubMed  Google Scholar 

  • Kim SG, Rostrup E, Larsson HB, Ogawa S, Paulson OB (1999) Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 41:1152–1161

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Hendrich K, Masamoto K, Kim S (2007) Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. J Cereb Blood Flow Metab 27:1235–1247

    Article  PubMed  Google Scholar 

  • Lammertsma AA (1984) Positron emission tomography of the brain: measurement of regional cerebral function in man. Clin Neurol Neurosurg 86:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Duong T, Yang G, Iadecola C, Kim S (2001) Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn Reson Med 45:791–800

    Article  CAS  PubMed  Google Scholar 

  • Leontiev O, Buxton RB (2007) Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. Neuroimage 35:175–184

    Article  PubMed Central  PubMed  Google Scholar 

  • Leontiev O, Dubowitz DJ, Buxton RB (2007) CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias. Neuroimage 36:1110–1122

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin A, Fox PT, Yang Y, Lu H, Tan L, Gao J (2008) Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF. Magn Reson Med 60:380–389

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu H, Ge Y (2008) Quantitative evaluation of oxygenation in venous vessels using T2-Relaxation-Under-Spin-Tagging MRI. Magn Reson Med 60:357–363

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu H, Golay X, Pekar JJ, Zijl PCV (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50:263–274

    Article  PubMed  Google Scholar 

  • Marchal G, Rioux P, Petit-Taboué MC, Sette G, Travère JM, Le Poec C, Courtheoux P, Derlon JM, Baron JC (1992) Regional cerebral oxygen consumption, blood flow, and blood volume in healthy human aging. Arch Neurol 49:1013–1020

    Article  CAS  PubMed  Google Scholar 

  • Mark CI, Fisher JA, Pike GB (2011) Improved fMRI calibration: precisely controlled hyperoxic versus hypercapnic stimuli. Neuroimage 54:1102–1111

    Article  PubMed  Google Scholar 

  • Mintun MA, Raichle ME, Martin WRW, Herscovitch P (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177–187

    CAS  PubMed  Google Scholar 

  • Moradi F, Buračas GT, Buxton RB (2012) Attention strongly increases oxygen metabolic response to stimulus in primary visual cortex. Neuroimage 59(1):601–607

    Google Scholar 

  • Obata T, Liu TT, Miller KL, Luh WM, Wong EC, Frank LR, Buxton RB (2004) Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients. Neuroimage 21:144–153

    Article  PubMed  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Uğurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pauling L, Coryell CD (1936) The magnetic properties and structure of the hemochromogens and related substances. Proc Natl Acad Sci U S A 22:159–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pears JA, Francis ST, Butterworth SE, Bowtell RW, Gowland PA (2003) Investigating the BOLD effect during infusion of Gd-DTPA using rapid T2* mapping. Magn Reson Med 49:61–70

    Article  CAS  PubMed  Google Scholar 

  • Perthen JE, Lansing AE, Liau J, Liu TT, Buxton RB (2008) Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: a calibrated BOLD fMRI study. Neuroimage 40:237–247

    Article  PubMed Central  PubMed  Google Scholar 

  • Petersen ET, Lim T, Golay X (2006) Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 55:219–232

    Article  PubMed  Google Scholar 

  • Prisman E, Slessarev M, Han J, Poublanc J, Mardimae A, Crawley A, Fisher J, Mikulis D (2008) Comparison of the effects of independently-controlled end-tidal PCO2 and PO2 on blood oxygen level-dependent BOLD MRI. J Magn Reson Imag 27:185–191

    Article  Google Scholar 

  • Rostrup E, Knudsen GM, Law I, Holm S, Larsson HBW, Paulson OB (2005) The relationship between cerebral blood flow and volume in humans. Neuroimage 24:1–11

    Article  PubMed  Google Scholar 

  • Severinghaus JW (1979) Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol 46:599–602

    CAS  PubMed  Google Scholar 

  • Sicard K, Duong T (2005) Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25:850–858

    Article  PubMed Central  PubMed  Google Scholar 

  • Silvennoinen MJ, Clingman CS, Golay X, Kauppinen RA, van Zijl PCM (2003) Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med 49:47–60

    Article  CAS  PubMed  Google Scholar 

  • Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJ (2001) Water proton MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T1, T2, T2*, and non-Lorentzian signal behavior. Magn Reson Med 45:533–42

    Article  CAS  PubMed  Google Scholar 

  • Stefanovic B, Pike GB (2005) Venous refocusing for volume estimation: VERVE functional magnetic resonance imaging. Magn Reson Med 53:339–347

    Article  PubMed  Google Scholar 

  • Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22:771–778

    Article  PubMed  Google Scholar 

  • St Lawrence KS, Ye FQ, Lewis BK, Frank JA, McLaughlin AC (2003) Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magn Reson Med 50:99–106

    Article  Google Scholar 

  • Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270

    Article  CAS  PubMed  Google Scholar 

  • Uludağ K (2010) To dip or not to dip: reconciling optical imaging and fMRI data. Proc Natl Acad Sci U S A 107:E23 (author reply E24)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uludağ K, Buxton RB (2004) Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation. Magn Reson Med 51:1088–1089 (author reply 1090)

    Article  PubMed  Google Scholar 

  • Uludağ K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB (2004) Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 23:148–155

    Article  PubMed  Google Scholar 

  • Uludağ K, Müller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165

    Article  PubMed  Google Scholar 

  • Vafaee MS, Gjedde A (2000) Model of blood-brain transfer of oxygen explains nonlinear flow-metabolism coupling during stimulation of visual cortex. J Cereb Blood Flow Metab 20:747–754

    Article  CAS  PubMed  Google Scholar 

  • Vafaee MS, Meyer E, Marrett S, Paus T, Evans AC, Gjedde A (1999) Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J Cereb Blood Flow Metab 19:272–277

    Article  CAS  PubMed  Google Scholar 

  • Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    Article  CAS  PubMed  Google Scholar 

  • Vorstrup S, Henriksen L, Paulson OB (1984) Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen. J Clin Invest 74:1634–1639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wise RG, Pattinson KTS, Bulte DP, Chiarelli PA, Mayhew SD, Balanos GM, O’Connor DF, Pragnell TR, Robbins PA, Tracey I, Jezzard P (2007) Dynamic forcing of end-tidal carbon dioxide and oxygen applied to functional magnetic resonance imaging. J Cereb Blood Flow Metab 27:1521–1532

    Article  CAS  PubMed  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR in Biomed 10:237–249

    Article  CAS  Google Scholar 

  • Xu F, Ge Y, Lu H (2009) Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 62:141–148

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu F, Yezhuvath U, Wang P, Lu H (2010a) Hypoxia and hyperoxia alter brain metabolism in awake human. Proceeding ISMRM 18th annual meeting, Stockholm, p 1137

    Google Scholar 

  • Xu F, Uh J, Brier MR, Hart J, Yezhuvath US, Gu H, Yang Y, Lu H (2010b) The influence of carbon dioxide on brain activity and metabolism in conscious humans. J Cereb Blood Flow Metab 31:58–67

    Article  PubMed Central  PubMed  Google Scholar 

  • Yablonskiy DA (1998) Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom study. Magn Reson Med 39:417–428

    Article  CAS  PubMed  Google Scholar 

  • Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–63

    Article  CAS  PubMed  Google Scholar 

  • Zappe A, Uludağ K, Oeltermann A, Uğurbil K, Logothetis N (2008) The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cereb Cortex 18:2666–2673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Blockley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Blockley, N., Griffeth, V., Simon, A., Buxton, R. (2015). Quantitative fMRI. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_9

Download citation

Publish with us

Policies and ethics