Skip to main content

Anatomical Basis for Functional Specialization

  • Chapter
  • First Online:

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 30))

Abstract

The anatomical basis of functional specialization and segregation in the brain reaches from the molecular level to the level of complex neural systems. Here, we discuss five major topics, which highlight the impact of neuroanatomy on function and vice versa:

  • Cytoarchitectonically defined areas and their layers are functionally relevant structural units in the cerebral cortex. Macroscopical landmarks cannot replace the microscopically defined borders.

  • Probabilistic cytoarchitectonic maps provide a reliable anatomical basis for studies integrating cytoarchitectonic and functional imaging data collected in different individual brains. These maps provide a reliable and precise approach to an understanding of structural–functional correlations in the human brain.

  • The regional and laminar distributions of various types of projection neurons and interneurons characterize sensory, motor and associative brain regions and are the basic features studied in cytoarchitectonic approaches.

  • Fibre tracts and their synaptic contacts constitute the structural basis for functional connectivity, specialization and segregation.

  • The regionally and laminar-specific expression of transmitter receptors is a powerful tool to delineate unimodal sensory areas from motor regions as well as multimodal association areas. The multi-receptor mapping enables the parcellation of the cortex to a previously not available detail and provides information about the molecular basis of perception, motor control and various neuronal mechanisms. The laminar expression pattern of receptors adds further evidence to the functional organization of connectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allman JM, Watson KK, Tetreault NA, Hakeem AY (2005) Intuition and autism: a possible role for von Economo neurons. Trends Cogn Sci 9:367–373

    Article  PubMed  Google Scholar 

  • Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR (2010) The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct 214:495–517

    Article  PubMed  Google Scholar 

  • Amunts K, Zilles K (2001) Advances in cytoarchitectonic mapping of the human cerebral cortex. In: Naidich T, Yousry T, Mathews V (eds) Neuroimaging clinics of North America, vol 11. W.B. Saunders Company, A. Harcourt Health Sciences Company, Philadelphia, pp 151–169

    Google Scholar 

  • Amunts K, Zilles K (2006) Atlases of the human brain: tools for functional neuroimaging. In: Zaborsky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract tracing 3: molecules, neurons, and systems. Springer, New York, pp 566–603

    Chapter  Google Scholar 

  • Amunts K, Istomin V, Schleicher A, Zilles K (1995) Postnatal development of the human primary motor cortex: a quantitative cytoarchitectonic analysis. Anat Embryol 192:557–571

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Schleicher A, Zilles K (1997) Persistence of layer IV in the primary motor cortex (area 4) of children with cerebral palsy. J. Brain Res 38:247–260

    CAS  Google Scholar 

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage 11:66–84

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Schleicher A, Zilles K (2002) Architectonic mapping of the human cerebral cortex. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor & Francis, London, pp 29–52

    Chapter  Google Scholar 

  • Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd JM, Marshall JC, Shah JN, Fink GR, Zilles K (2004) Analysis of the neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. NeuroImage 22:42–56

    Article  PubMed  Google Scholar 

  • Amunts K, Schleicher A, Zilles K (2007a) Cytoarchitecture of the cerebral cortex—more than localization. NeuroImage 37:1061–1065

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Armstrong E, Malikovic A, Hömke L, Mohlberg H, Schleicher A, Zilles K (2007b) Gender-specific left-right asymmetries in human visual cortex. J Neurosci 27:1356–1364

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9):e1000489

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau M+, Bludau S, Bazin PL, Lewis LB, Oros-Peusquens AM, Shah NJ, Lippert T, Zilles K, Evans AC (2013) BigBrain: An ultrahigh-resolution 3D human brain model. Science 340:1472–1475

    Google Scholar 

  • Axer H, Keyserlingk DG (2000) Mapping of fiber orientation in human internal capsule by means of polarized light and confocal scanning laser microscopy. J Neurosci Methods 94:165–175

    Article  CAS  PubMed  Google Scholar 

  • Axer H, Lippitz BE, von Keyserlingk DG (1999) Morphological asymmetry in anterior limb of human internal capsule revealed by confocal laser and polarized light microscopy. Psychiatry Res. 91:141–154

    Article  CAS  PubMed  Google Scholar 

  • Axer H, Berks G, Keyserlingk DG (2000) Visualization of nerve fiber orientation in gross histological sections of the human brain. Microsc Res Tech 51:481–492

    Article  CAS  PubMed  Google Scholar 

  • Axer H, Axer M, Krings T, Keyserlingk DG (2001) Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light. J Neurosci Methods 105:121–131

    Article  CAS  PubMed  Google Scholar 

  • Axer H, Leunert M, Mürköster M, Grässel D, Larsen L, Griffin LD, Graf v Keyserlingk D (2002) A 3D fiber model of the human brainstem. Comput Med Imaging Graph 26:439–444

    Article  PubMed  Google Scholar 

  • Axer M, Amunts K, Gräßel D, Palm C, Dammers J, Axer H, Pietrzyk U, Zilles K (2010) A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. Neuroimage 54:1091–101

    Google Scholar 

  • Barnikol UB, Amunts K, Dammers J, Mohlberg H, Fieseler T, Malikovic A, Zilles K, Niedeggen M, Tass PA (2006) Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps. NeuroImage 31:86–108

    Article  PubMed  Google Scholar 

  • Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219

    Article  CAS  PubMed  Google Scholar 

  • Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, Coenen HH, Zilles K (2003) In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. NeuroImage 19:1760–1769

    Article  PubMed  Google Scholar 

  • Betz W (1874) Anatomischer Nachweis zweier Gehirncentra. Zbl Med Wiss 12:578–580 and 594–599

    Google Scholar 

  • Bok ST (1929) Der Einfluss der in den Furchen und Windungen auftretenden Krümmungen der Grosshirnrinde auf die Rindenarchitektur. Z Gesamte Neurol Psychiatr 12, pp. 682–750.

    Google Scholar 

  • Braak H (1976) A primitive gigantopyramidal field buried in the depth of the cingulate sulcus of the human brain. Brain Res 109:219–233

    Article  CAS  PubMed  Google Scholar 

  • Braak E (1982) On the structure of the human striate area. Adv Anat Embryol Cell Biol 77:1–86

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1976) The pyramidal cells of Betz within the cingulate and precentral gigantopyramidal field in the human brain. A Golgi and pigmentoarchitectonic study. Cell Tissue Res 172:103–119

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1903a) Beiträge zur histologischen Lokalisation der Großhirnrinde. Erste Mitteilung: Die Regio Rolandica. J Psychol Neurol 2:79–107

    Google Scholar 

  • Brodmann K (1903b) Beiträge zur histologischen Lokalisation der Grosshirnrinde. II. Der Calcarinustyp. J Psychol Neurol 2:133–159

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth JA, Leipzig

    Google Scholar 

  • Brodmann K (1914) Physiologie des Gehirns. In: Knoblauch A, Brodmann K, Hauptmann A (eds) Allgemeine Chirurgie der Gehirnkrankheiten. Verlag von Ferdinand Enke, Stuttgart, pp 86–426

    Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448

    Article  PubMed  Google Scholar 

  • Choi H-J, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K (2006) Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol 495:53–69

    Article  PubMed Central  PubMed  Google Scholar 

  • Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214

    Article  CAS  PubMed  Google Scholar 

  • Dammers J, Axer M, Gräßel D, Palm C, Zilles K, Amunts K, Pietrzyk U (2010) Signal enhancement in polarized light imaging by means of independent component analysis. Neuroimage 49:1241–1248

    Article  PubMed  Google Scholar 

  • Dejerine J (1895) Anatomie des Centres Nerveux. Rueff, Paris

    Google Scholar 

  • Devlin JT, Poldrack RA (2007) In praise of tedious anatomy. Neuroimage 37:1033–1041

    Article  PubMed Central  PubMed  Google Scholar 

  • Eickhoff S, Walters NB, Schleicher A, Kril J, Egan GF, Zilles K, Watson JDG, Amunts K (2005a) High-resolution MRI reflects myelo- and cytoarchitecture of human cerebral cortex. Hum Brain Mapp 24:206–215

    Article  PubMed  Google Scholar 

  • Eickhoff S, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005b) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Eickhoff S, Schleicher A, Zilles K, Amunts K (2006a) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267

    Article  PubMed  Google Scholar 

  • Eickhoff S, Amunts K, Mohlberg H, Zilles K (2006b) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Heim S, Zilles K, Amunts K (2006c) Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32:570–582

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Weiss PH, Amunts K, Fink GR, Zilles K (2006d) Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp 27:611–621

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Lotze M, Wietek B, Amunts K, Enck P, Zilles K (2006e) Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study. NeuroImage 31:1004–1014

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Paus T, Caspers S, Grosbras M-H, Evans AC, Zilles K, Amunts K (2007a) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage 36:511–521

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Grefkes C, Zilles K, Fink GR (2007b) The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb Cortex 17:1800–1811

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Rottschy C, Zilles K (2007c) Laminar distribution and co-distribution of neurotransmitter receptors in human early visual cortex. Brain Struct Funct 212:255–267

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff SB, Schleicher A, Scheperjans F, Palomero-Gallagher N, Zilles K (2007d) Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex. NeuroImage 34:1317–1330

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Grefkes C, Fink GR, Zilles K (2008) Functional lateralisation of face, hand and trunk representation in anatomically defined human somatosensory areas. Cereb Cortex 18:2820–2830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fellemann DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  • Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19:2001–2012

    Article  PubMed Central  PubMed  Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Article  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Weinmann O, Wenzel A, Benke D (1998) Synapse-specific localization of NMDA and GABAA receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390:194–210

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto K (1995) Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 108:3443–3449

    CAS  PubMed  Google Scholar 

  • Geyer S, Zilles K (2005). Functional neuroanatomy of human motor cortex. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders. Oxford University Press, Oxford, pp 3–22

    Google Scholar 

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1997) The somatosensory cortex of human: cytoarchitecture and regional distributions of receptor-binding sites. NeuroImage 6:27–45

    Article  CAS  PubMed  Google Scholar 

  • Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14:617–632

    Article  CAS  PubMed  Google Scholar 

  • Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180–194

    Article  PubMed  Google Scholar 

  • Hutton C, De Vita E, Ashburner J, Deichmann R, Turner R (2008) Voxel-based cortical thickness measurements in MRI. NeuroImage 40:1701–1710

    Article  PubMed Central  PubMed  Google Scholar 

  • Hyde KL, Samson F, Evans AC, Mottron L (2010) Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Hum Brain Mapp 31:556–566

    PubMed  Google Scholar 

  • Kabani N, Le Goualher G, MacDonald D, Evans AC (2001) Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13:375–380

    Article  CAS  PubMed  Google Scholar 

  • Kasugai Y, Swinny JD, Roberts JDB, Yannis Dalezios Y, Fukazawa Y, Sieghart W, Shigemoto R, Somogyi P (2010) Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 32:1868–1888

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K (2010) Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex 20:1448–1461

    Article  PubMed Central  PubMed  Google Scholar 

  • la Fougère C, Grant S, Kostikov A, Schirrmacher R, Gravel P, Schipper H, Reader A, Evans A, Thiel A (2010) Where in-vivo omaging meets cytoarchitectonics: the relationship between cortical thickness and neuronal density measured with high-resolution [18F]flumazenil-PET. Neuroimage 6:951–60

    Google Scholar 

  • Larsen L, Griffin LD, Grässel D, Witte OW, Axer H (2007) Polarized light imaging of white matter architecture. Microsc Res Tech 70:851–863

    Article  PubMed  Google Scholar 

  • Le Bihan D, Breton E (1985) Imagerie de diffusion in vivo par re´sonance magne´tique nucle´aire. CR Acad Sci Paris 301:1109–1112

    Google Scholar 

  • Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. NeuroImage 24:163–173

    Article  PubMed  Google Scholar 

  • Lungwitz W (1937) Zur myeloarchitektonischen Untergliederung der menschlichen Area praeoccipitalis (Area 19 Brodmann). J Psychol Neurol 47:607–638

    Google Scholar 

  • Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, Palomero-Gallagher N, Armstrong E, Zilles K (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT +: a probabilistic, stereotaxic map of area hOc5. Cereb Cortex 17:562–574

    Article  PubMed  Google Scholar 

  • Marchi V, Algeri G (1885) Sulle degenerazioni descendenti consecutive a lesioni sperimentale in diverse zone della corteccia cerebrale. Riv Freniat 11:492–494

    Google Scholar 

  • Mash DC, White WF, Mesulam M-M (1988) Distribution of muscarinic receptor subtypes within architectonic subregions of the primate cerebral cortex. J Comp Neurol 278:265–274

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462

    Article  CAS  PubMed  Google Scholar 

  • Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, LeGoualher G, Feidler J, Smith K, Boomsma D, Hulshoff Pol H, Cannon T, Kawashima R, Mazoyer B (2001) A four-dimensional probabilistic atlas of the human brain. JAMA 8:401–430

    CAS  Google Scholar 

  • Mendelsohn FAO, Paxinos GE (eds) (1991) Receptors in the human nervous system. Academic, San Diego

    Google Scholar 

  • Meyer PT, Bier D, Holschbach MH, Boy C, Olsson RA, Coenen HH, Zilles K, Bauer A (2004) Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metabol 24:323–333

    Article  CAS  Google Scholar 

  • Meyer PT, Elmenhorst D, Bier D, Holschbach MH, Matusch A, Coenen HH, Zilles K, Bauer A (2005) Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. NeuroImage 24:1192–1204

    Article  PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A (2006) A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. NeuroImage 32:1100–1105

    Article  PubMed  Google Scholar 

  • Meynert T (1967) Der Bau der Gross-Hirnrinde und seine örtlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corollarium. Vierteljahresschr Psychiatr 1:198–217

    Google Scholar 

  • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13:684–701

    Article  CAS  PubMed  Google Scholar 

  • Morosan P, Schleicher A, Amunts K, Zilles K (2005) Multimodal architectonic mapping of human superior temporal gyrus. Anat Embryol 210:401–406

    Article  CAS  PubMed  Google Scholar 

  • Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, Zilles K, Ehrsson HH (2005) Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol 93:1020–1034

    Article  PubMed  Google Scholar 

  • Nauta WJH, Gygax PA (1954) Silver impregnation of degenerating axons in the central nervous system: a modified technique. Stain Technol 29:91–93

    CAS  PubMed  Google Scholar 

  • Nimchinsky EA, Vogt BA, Morrison JH, Hof PR (1995) Spindle neurons of the human anterior cingulate cortex. J Comp Neurol 355:27–37

    Article  CAS  PubMed  Google Scholar 

  • Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci U S A 96:5268–5273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palm C, Axer M, Gräßel D, Dammers J, Lindemeyer J, Zilles K, Pietrzyk U, Amunts K (2010) Towards ultra-high resolution fibre tract mapping of the human brain—registration of polarised light images and reorientation of fibre vectors. Front Hum Neurosci 4:1–16

    Google Scholar 

  • Palomero-Gallagher N, Zilles K (2009) Transmitter receptor systems in cingulate regions and areas. In: Vogt BA (ed) Cingulate neurobiology and disease. Oxford University Press, New York, pp 31–63

    Google Scholar 

  • Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B (2008) Cytology and receptor architecture of human anterior cingulate cortex. J Comp Neurol 508:906–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30:2336–2355

    Article  PubMed  Google Scholar 

  • Palomero-Gallagher N, Amunts K, Zilles K (2015) Transmitter receptor distribution in the human brain. In Toga AW (ed) Brain mapping: An encyclopedic reference. Section Anatomy & Physiology (Eds. Zilles K, Amunts K). Elsevier Academic Press, San Diego, Chapter 221, pp 261–275

    Google Scholar 

  • Papadelis C, Eickhoff SB, Zilles K, Ioannides AA (2011) BA3b and BA1 activate in a serial fashion after median nerve stimulation: direct evidence from combining source analysis of evoked fields and cytoarchitectonic probabilistic maps. NeuroImage 54:60–73

    Article  PubMed  Google Scholar 

  • Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70:453–469

    CAS  PubMed  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    Article  CAS  PubMed  Google Scholar 

  • Rockland KS (2002) Visual cortical organization at the single axon level: a beginning. Neurosci Res 42:155–166

    Article  CAS  PubMed  Google Scholar 

  • Rose M (1928) Die Inselrinde des Menschen und der Tiere. J Psychol Neurol 37:467–624

    Google Scholar 

  • Rottschy C, Eickhoff S, Schleicher A, Mohlberg H, Kujovic M, Zilles K, Amunts K (2007) The ventral visual cortex in humans: cytoarchitectonic mapping of two extrastriate areas. Hum Brain Mapp 28:1045–1059

    Article  PubMed  Google Scholar 

  • Sanides F, Vitzthum H (1965a) Die Grenzerscheinungen am Rande der menschlichen Sehrinde. Dtsch Z Nervenheilkd 187:708–719

    Article  Google Scholar 

  • Sanides F, Vitzhum HG (1965b) Zur Architektonik der menschlichen Sehrinde und den Prinzipien ihrer Entwicklung. Dtsch Z Nervenheilkd 187:680–707

    Article  Google Scholar 

  • Scheperjans F, Grefkes C, Palomero-Gallagher N, Schleicher A, Zilles K (2005a) Subdivision of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas. Neuroimage 25:975–929

    Article  PubMed  Google Scholar 

  • Scheperjans F, Palomero-Gallagher N, Grefkes C, Schleicher A, Zilles K (2005b) Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions. Neuroimage 28:362–379

    Article  PubMed  Google Scholar 

  • Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008a) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18:846–867

    Article  PubMed  Google Scholar 

  • Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008b) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in human superior parietal cortex. Cereb Cortex 18:2141–2157

    Article  PubMed Central  PubMed  Google Scholar 

  • Schlaug G, Schleicher A, Zilles K (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex. J Comp Neurol 351:441–452

    Article  CAS  PubMed  Google Scholar 

  • Schleicher A, Zilles K (1990) A quantitative approach to cytoarchitectonics: analysis of structural inhomogeneities in nervous tissue using an image analyser. J Microsc 157:367–381

    Article  CAS  PubMed  Google Scholar 

  • Schleicher A, Zilles K (2005) The verticality index: a quantitative approach to the analysis of the columnar arrangement of neurons in the primate neocortex. In: Casanova MF (ed) Neocortical modularity and the cell minicolumn. Nova Biomedical, New York, pp 181–185

    Google Scholar 

  • Schleicher A, Amunts K, Geyer S, Kowalski T, Zilles K (1998) An observer-independent cytoarchitectonic mapping of the human cortex using a stereological approach. Acta Stereol 17:75–82

    Google Scholar 

  • Schleicher A, Amunts K, Geyer S, Morosan P, Zilles K (1999) Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics. Neuroimage 9:165–177

    Article  CAS  PubMed  Google Scholar 

  • Schleicher A, Amunts K, Geyer S, Kowalski T, Schormann T, Palomero-Gallagher N, Zilles K (2000) A stereological approach to human cortical architecture: identification and delineation of cortical areas. J Chem Neuroanat 20:31–47

    Article  CAS  PubMed  Google Scholar 

  • Schleicher A, Palomero-Gallagher N, Morosan P, Eickhoff S, Kowalski T, de Vos K, Amunts K, Zilles K (2005) Quantitative architectonic analysis: a new approach to cortical mapping. Anat Embryol 210:373–386

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Miner LH, Omelchenko N (2006) Preembedding immunoelectron microscopy: applications for studies of the nervous system. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract tracing 3. Molecules, neurons, and systems. Springer, New York, pp 6–71

    Chapter  Google Scholar 

  • Sherwood CC, Lee PWH, Rivara C-B, Holloway RL, Gilissen EPE, Simmons RMT, Hakeem A, Allman JM, Erwin JM, Hof PR (2003) Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav Evol 61:28–44

    Article  PubMed  Google Scholar 

  • Somogyi P, Takagi H, Richards JG, Mohler H (1989) Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J Neurosci 9:2197–2209

    CAS  PubMed  Google Scholar 

  • Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231

    Article  CAS  PubMed  Google Scholar 

  • Stephan KE, Tittgemeyer M, Knösche TR, Moran RJ, Friston KJ (2009) Tractography-based priors for dynamic causal models. Neuroimage 47:1628–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Ungerleider L, Mishkin M (1982) Two cortical visual systems. In: Ingle DG, Goodale MA, Mansfield RJQ (eds) Analysis of visual behavior. MIT, Cambridge, pp 549–586

    Google Scholar 

  • van Essen DC, Maunsell JH, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199:293–326

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC, Newsome WT, Bixby JL (1982) The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J Neurosci 2:265–283

    CAS  PubMed  Google Scholar 

  • Virta A, Barnett A, Pierpaoli C (1999) Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imaging 17:1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:292–398

    Google Scholar 

  • von Economo C (1926) Eine neue Art Spezialzellen des Lobus cinguli und Lobus insulae. Zschr. ges. Neurol. Psychiat. 100:706–712

    Article  Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin

    Google Scholar 

  • Voogd J (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier Academic, Amsterdam, pp 321–392

    Chapter  Google Scholar 

  • Walters NB, Eickhoff SB, Schleicher A, Zilles K, Amunts K, Egan GF, Watson JD (2007) Observer-independent analysis of high-resolution MR images of the human cerebral cortex: in vivo delineation of cortical areas. Hum Brain Mapp 28:1–8

    Article  PubMed  Google Scholar 

  • Westlye LT, Walhovd KB, Dale AM, Bjørnerud A, Due-Tønnessen P, Engvig A, Grydeland H, Tamnes CK, Østby Y, Fjell AM (2010) Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity. Neuroimage 52:172–185

    Article  PubMed  Google Scholar 

  • Wohlschläger AM, Specht K, Lie C-H, Mohlberg H, Wohlschläger A, Bente K, Pietrzyk U, Stöcker T, Zilles K, Amunts K, Fink GR (2005) Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2. NeuroImage 26:73–82

    Article  PubMed  Google Scholar 

  • Wouterlood FG (2006) Combined fluorescence methods to determine synapses in the light microscope: multilabel confocal laser scanning microscopy. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract tracing 3. Molecules, neurons, and systems. Springer, New York, pp 394–435

    Chapter  Google Scholar 

  • Wree A, Schleicher A, Zilles K (1982) Estimation of volume fractions in nervous tissue with an image analyzer. J Neurosci Methods 6:29–43

    Article  CAS  PubMed  Google Scholar 

  • Young JP, Herath P, Eickhoff S, Choi H-J, Grefkes C, Zilles K, Roland PE (2004) Somatotopy and attentional modulation of the human parietal and opercular regions. J Neurosci 24:5391–5399

    Article  CAS  PubMed  Google Scholar 

  • Zaborszky L, Wouterlood FG, Lanciego JL (2006) Neuroanatomical tract tracing 3. Molecules, neurons, and systems. Springer, New York

    Book  Google Scholar 

  • Zilles K (2004) Architecture of the human cerebral cortex: regional and laminar organization. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier Academic, Amsterdam, pp 997–1055

    Chapter  Google Scholar 

  • Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339

    Article  PubMed  Google Scholar 

  • Zilles K, Amunts K (2010) Centenary of Brodmann’s map conception and fate. Nat Rev Neurosci 11:139–145

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Clarke S (1997) Architecture, connectivity and transmitter receptors of human extrastriate visual cortex. Comparison with non-human primates. In: Rockland KS, et al. (ed) Cerebral cortex, vol 12. Plenum, New York, pp 673–742

    Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo- and receptor architectonics of the human parietal cortex. NeuroImage 14:8–20

    Article  Google Scholar 

  • Zilles K, Schleicher A (1995) Correlative imaging of transmitter receptor distributions in human cortex. In: Stumpf WE, Solomon HF (eds) Autoradiography and correlative imaging. Academic, San Diego, pp 277–307

    Google Scholar 

  • Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qü M, Dabringhaus A, Seitz R, Roland PE (1995). Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat 187:515–537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qü, M, Schormann T (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and non-human primate brain. In: Lüders HO (ed) Advanced Neurology, vol 70: supplementary sensorimotor area. Lippincott-Raven, Philadelphia, pp 29–43

    Google Scholar 

  • Zilles K, Schleicher A, Langemann C, Amunts K, Morosan P, Palomero-Gallagher N, Schormann T, Mohlberg H, Bürgel U, Steinmetz H, Schlaug G, Roland PE (1997) A quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum Brain Mapp 5:218–221

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher A (2002a) Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12:587–599

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002b) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Mazziotta JC, Toga A (eds) Brain mapping: the methods. Elsevier, Amsterdam, pp 573–602

    Chapter  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat 205:417–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Bludau S, Mohlberg H, Amunts K. (2015a) Cytoarchitecture and maps of the human cerebral cortex. In Toga A W (ed) Brain mapping: An encyclopedic reference. Section Anatomy & Physiology (eds Zilles K, Amunts K). Elsevier Academic Press, San Diego. Chapter 207, pp 115–135

    Google Scholar 

  • Zilles K, Palomero-Gallagher N, Amunts K (2015b) Myeloarchitecture and maps of the cerebral cortex. In Toga A W (ed) Brain mapping: An encyclopedic reference. Section Anatomy & Physiology (eds Zilles K, Amunts K.). Elsevier Academic Press, San Diego. Chapter 209, pp 137–156

    Google Scholar 

  • Zilles K, Palomero-Gallagher N, Gräßel D, Schlömer P, Cremer M, Woods R, Amunts K, Axer M (2015c, in press) High-resolution fiber and fiber tract imaging using polarized light microscopy in the human, monkey, rat and mouse brain. In Rockland K S (ed.), Axons and brain architecture. Elsevier Academic Press, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Zilles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Zilles, K., Amunts, K. (2015). Anatomical Basis for Functional Specialization. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_4

Download citation

Publish with us

Policies and ethics