Skip to main content

Field Strength Dependence of Contrast and Noise in fMRI

  • Chapter
  • First Online:
fMRI: From Nuclear Spins to Brain Functions

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 30))

Abstract

Experiments on human brain function using the blood oxygenation level-dependent (BOLD) contrast mechanism have become a principal tool in neuroscience and have constituted one of the major applications pushing the development of high-field magnetic resonance imaging (MRI) technology. The benefit of acquiring BOLD functional imaging maps at higher-field strength is often summarized as improved sensitivity (to subtle activation) and improved spatial specificity (to the site of neuronal activation). These benefits derive from a complex combination of physical and biological mechanisms, some of which are well understood and some of which are still being investigated and modeled. While the BOLD contrast mechanism and its dependence on field strength is complex enough to spark debate over the best way to exploit potential benefits, the empirical data amply support these broad claims and have driven the steady increase in the field strength of scanners used for these experiments as well as a continuous investigation of techniques to maximize sensitivity and spatial specificity. In this chapter, we examine the basic scaling of the MR signal and noise with field strength in simple cases as well as in the more complex biological cases where noise is dominated by nuisance fluctuations driven by biological processes (such as blood circulation and respiration). We also examine the more complex topic of the changes in contrast to BOLD imaging with field strength and the changing source of the signal within the vasculature as field strength B 0 is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandettini PA, Wong EC, Jesmanowicz A, Hinks RS, Hyde JS (1994a) Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed 7:12–20

    Article  CAS  PubMed  Google Scholar 

  • Bandettini PA, Wong EC, Jesmanowicz A, Prost R, Cox RW, Hinks RS, Hyde JS (1994b) MRI of human brain activation at 0.5 T, 1.5 T and 3.0 T: comparisons of & ’ and functional contrast to noise ratio. In: Proceedings of the second annual meeting of the Society of Magnetic Resonance in Medicine, San Francisco, p 434

    Google Scholar 

  • Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Shmueli K, Duyn JH (2009a) Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magn Reson Imaging 27:1019–1029

    Article  PubMed Central  PubMed  Google Scholar 

  • Bianciardi M, van Gelderen P, Duyn JH, Fukunaga M, de Zwart JA (2009b) Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations. Neuroimage 44:448–454

    Article  PubMed Central  PubMed  Google Scholar 

  • Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31:1536–1548

    Article  PubMed  Google Scholar 

  • Bloch F (1953) The principle of nuclear induction. Science 118:425–430

    Article  CAS  PubMed  Google Scholar 

  • Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995a) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34:4–10

    Article  CAS  PubMed  Google Scholar 

  • Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995b) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566

    Article  CAS  PubMed  Google Scholar 

  • Breuer FA, Blaimer M, Seiberlich N, Jakob PM, Griswold MA (2008) A general formulation for quantitative g-factor calculation in GRAPPA reconstructions. In: proceedings of the ISMRM, p 10

    Google Scholar 

  • Cohen ER, Rostrup E, Sidaros K, Lund TE, Paulson OB, Uğurbil K, Kim SG (2004) Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. Neuroimage 23:613–624

    Article  PubMed  Google Scholar 

  • Cohen-Adad J, Helmer K, Benner T, Polimeni JR, McNab JA, Wald LL, Rosen BR, Mainero C (2011) Cortical surface and depth analysis of T2* in the human brain. In: proceedings of the 17th annual meeting of OHBM, Quebec, p 2303

    Google Scholar 

  • Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Mag Reson Med 38:852–857

    Article  CAS  Google Scholar 

  • Cremillieux Y, Ding S, Dunn JF (1998) High-resolution in vivo measurements of transverse relaxation times in rats at 7 Tesla. Magn Reson Med 39:285–290

    Article  CAS  PubMed  Google Scholar 

  • de Zwart JA, Gelderen P, Fukunaga M, Duyn JH (2008) Reducing correlated noise in fMRI data. Magn Reson Med 59:939–945

    Article  PubMed  Google Scholar 

  • Gati JS, Menon RS, Uğurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302

    Article  CAS  PubMed  Google Scholar 

  • Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44:162–167

    Article  CAS  PubMed  Google Scholar 

  • Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34:910–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henkelman RM (1985) Measurement of signal intensities in the presence of noise in MR images. Med Phys 12:232–233

    Article  CAS  PubMed  Google Scholar 

  • Hutton C, Josephs O, Stadler J, Featherstone E, Reid A, Speck O, Bernarding J, Weiskopf N (2011) The impact of physiological noise correction on fMRI at 7T. Neuroimage 57:101–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Josephs O, Howseman AM, Friston K, Turner R (1997) Physiological noise modelling for multi-slice EPI fMRI using SPM. In: proceedings of the ISMRM, p 1682

    Google Scholar 

  • Kellman P, McVeigh ER (2005) Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 54:1439–1447

    Article  PubMed Central  PubMed  Google Scholar 

  • Kruger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46:631–637

    Article  CAS  PubMed  Google Scholar 

  • Lowe MJ, Sorenson JA (1997) Spatially filtering functional magnetic resonance imaging data. Magn Reson Med 37:723–729

    Article  CAS  PubMed  Google Scholar 

  • Macovski A (1996) Noise in MRI. Magn Reson Med 36:494–497

    Article  CAS  PubMed  Google Scholar 

  • Martindale J, Kennerley AJ, Johnston D, Zheng Y, Mayhew JE (2008) Theory and generalization of Monte Carlo models of the BOLD signal source. Magn Reson Med 59:607–618

    Article  PubMed  Google Scholar 

  • McKenzie CA, Drost DJ, Carr TJ (1994) The effect of magnetic field strength on signal change dS/S in functional MRI with BOLD contrast. In: proceedings of the second annual meeting of the Society of Magnetic Resonance in Medicine, San Francisco, p 433

    Google Scholar 

  • Menon RS, Ogawa S, Tank DW, Uğurbil K (1993) Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med 30:380–386

    Article  CAS  PubMed  Google Scholar 

  • Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110–113

    Article  CAS  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Uğurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohliger MA, Grant AK, Sodickson DK (2003) Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations. Magn Reson Med 50:1018–1030

    Article  PubMed  Google Scholar 

  • Oja JM, Gillen J, Kauppinen RA, Kraut M, van Zijl PC (1999) Venous blood effects in spin-echo fMRI of human brain. Magn Reson Med 42:617–626

    Article  CAS  PubMed  Google Scholar 

  • Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52:1334–1346

    Article  PubMed Central  PubMed  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  • Robson PM, Grant AK, Madhuranthakam AJ, Lattanzi R, Sodickson DK, McKenzie CA (2008) Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med 60:895–907

    Article  PubMed Central  PubMed  Google Scholar 

  • Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225

    Article  CAS  PubMed  Google Scholar 

  • Shmueli K, van Gelderen P, de Zwart JA, Horovitz SG, Fukunaga M, Jansma JM, Duyn JH (2007) Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage 38:306–320

    Article  PubMed Central  PubMed  Google Scholar 

  • Stroman PW, Krause V, Frankenstein UN, Malisza KL, Tomanek B (2001) Spin-echo versus gradient-echo fMRI with short echo times. Magn Reson Imaging 19:827–831

    Article  CAS  PubMed  Google Scholar 

  • Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26:243–250

    Article  CAS  PubMed  Google Scholar 

  • Triantafyllou C, Hoge RD, Wald LL (2006) Effect of spatial smoothing on physiological noise in high-resolution fMRI. Neuroimage 32:551–557

    Article  PubMed  Google Scholar 

  • Triantafyllou C, Polimeni J, Elschot M, Wald L (2009) Physiological noise in gradient echo and spin echo EPI at 3T and 7T. In: proceedings of 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p 122

    Google Scholar 

  • Triantafyllou C, Polimeni JR, Wald LL (2011a) Physiological noise and signal-to-noise ratio in fMRI with multi-channel array coils. Neuroimage 55:597–606

    Article  PubMed Central  PubMed  Google Scholar 

  • Triantafyllou C, Wald LL, Hoge RD (2011b) Echo-time and field strength dependence of BOLD reactivity in veins and parenchyma using flow-normalized hypercapnic manipulation. PLoS ONE 2001;6(9):584–95

    Google Scholar 

  • Turner R (2002) How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 16:1062–1067

    Article  PubMed  Google Scholar 

  • Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 T using deoxygenation contrast EPI. Magn Reson Med 29:277–279

    Article  CAS  PubMed  Google Scholar 

  • Uludağ K, Muller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165

    Article  PubMed  Google Scholar 

  • Van de Moortele PF, Pfeuffer J, Glover GH, Uğurbil K, Hu X (2002) Respiration-induced B0 fluctuations and their spatial distribution in the human brain at 7 Tesla. Magn Reson Med 47:888–895

    Article  PubMed  Google Scholar 

  • Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Uğurbil K (2001) 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30

    Article  CAS  PubMed  Google Scholar 

  • Wiesinger F, Boesiger P, Pruessmann KP (2004a) Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 52:376–390

    Article  PubMed  Google Scholar 

  • Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Uğurbil K, Pruessmann KP (2004b) Parallel imaging performance as a function of field strength—an experimental investigation using electrodynamic scaling. Magn Reson Med 52:953–964

    Article  PubMed  Google Scholar 

  • Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Uğurbil K, Pruessmann KP (2006) Potential and feasibility of parallel MRI at high field. NMR Biomed 19:368–378

    Article  PubMed  Google Scholar 

  • Wise RG, Ide K, Poulin MJ, Tracey I (2004) Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21:1652–1664

    Article  PubMed  Google Scholar 

  • Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, Vaughan JT, Merkle H, Uğurbil K, Hu X (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594

    Article  CAS  PubMed  Google Scholar 

  • Yacoub E, Van De Moortele PF, Shmuel A, Uğurbil K (2005) Signal and noise characteristics of Hahn SE and GE BOLD fMRI at 7 T in humans. Neuroimage 24:738–750

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Jonathan Polimeni for useful discussions on the theory of noise in arrays. We acknowledge support from the National Center for Research Resources (NCRR) grant P41RR014075, S10RR021110, S10RR023401, S10RR019307, S10RR19254, and S10RR023043. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence L. Wald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Wald, L., Triantafyllou, C., Hoge, R. (2015). Field Strength Dependence of Contrast and Noise in fMRI. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_27

Download citation

Publish with us

Policies and ethics