Skip to main content

fMRI of the Sensorimotor System

  • Chapter
  • First Online:
fMRI: From Nuclear Spins to Brain Functions

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 30))

  • 3359 Accesses

Abstract

This chapter focuses on a key characteristic of the somatosensory as well as the motor system, that is, its somatotopic organization. The good spatial resolution of functional MRI (fMRI) as compared to previous functional neuroimaging approaches such as positron emission tomography has allowed noninvasive studies at hitherto unknown spatio-anatomical precision. While early fMRI studies mostly were confirmatory of previously known features of sensorimotor organization, recent studies are shaping a new concept of cortical representations. Besides the somatotopic arrangement, they also take into account the pronounced overlap of body representations, that is, its network characters, particularly for functional units such as the hand. In addition to elucidating general features of sensorimotor neurophysiology, fMRI is ideally suited for identifying individual neuroplasticity. It allows to monitor the cerebral effects of learning processes, such as learning to play an instrument, but also the reaction to pathological events such as peripheral and central lesions to the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397 Bandettini PA, Wong EC, Jesmanowicz A, Hinks RS, Hyde JS (1994) Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed 7(1/2):12–20

    Article  CAS  PubMed  Google Scholar 

  • Barnes SJ, Finnerty GT (2009) Sensory experience and cortical rewiring. Neuroscientist 16(2):186–198

    Article  PubMed  Google Scholar 

  • Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Google Scholar 

  • Blankenburg F, Taskin B, Ruben J, Moosmann M, Ritter P, Curio G, Villringer A (2003a) Imperceptible stimuli and sensory processing impediment. Science 299(5614):1864

    Article  CAS  PubMed  Google Scholar 

  • Blankenburg F, Ruben J, Meyer R, Schwiemann J, Villringer A (2003b) Evidence for a rostral-to-caudal somatotopic organization in human primary somatosensory cortex with mirror-reversal in areas 3b and 1. Cereb Cortex 13(9):987–993

    Article  PubMed  Google Scholar 

  • Boecker H, Kleinschmidt A, Requardt M, Hänicke W, Merboldt KD, Frahm J (1994) Functional cooperativity of human cortical motor areas during self-paced simple finger movements. A high-resolution MRI study. Brain 117:1231–1239

    Article  PubMed  Google Scholar 

  • Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van Essen DC, Schlaggar BL, Petersen SE (2008) Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41(1):45–57

    Article  PubMed Central  PubMed  Google Scholar 

  • Colebatch JG, Deiber MP, Passingham RE, Friston KJ, Frackowiak RS (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65(6):1392–1401

    CAS  PubMed  Google Scholar 

  • Druschky K, Kaltenhäuser M, Hummel C, Druschky A, Huk WJ, Stefan H, Neundörfer B (2000) Alteration of the somatosensory cortical map in peripheral mononeuropathy due to carpal tunnel syndrome. Neuroreport 11(17):3925–3930

    Article  CAS  PubMed  Google Scholar 

  • Flor H, Birbaumer N, Roberts LE, Feige B, Lutzenberger W, Hermann C, Kopp B (1996) Slow potentials, event-related potentials, “gamma-band” activity, and motor responses during aversive conditioning in humans. Exp Brain Res 112(2):298–312 Foerster O (1909) Der Lähmungstypus bei corticalen Hirnherden. Dtsch Z Nervenheilkd 37:349–414

    Article  Google Scholar 

  • Foerster O (1931) The cerebral cortex in man. Lancet 221:309–312

    Google Scholar 

  • Frahm J, Bruhn H, Merboldt K-D, Hänicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2:501–505

    Google Scholar 

  • Francis ST, Kelly EF, Bowtell R, Dunseath WJ, Folger SE, McGlone F (2000) fMRI of the responses to vibratory stimulation of digit tips. Neuroimage 11:188–202

    Article  CAS  PubMed  Google Scholar 

  • Freyer F, Becker R, Anami K, Curio G, Villringer A, Ritter P (2009) Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction. Neuroimage 48:94–108

    Article  PubMed  Google Scholar 

  • Gelnar PA, Krauss BR, Szeverenyi NM, Apkarian AV (1998) Fingertip representation in the human somatosensory cortex: an fMRI study. Neuroimage 7:261–283

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Weiss M, Reimann K, Lohmann G, Turner R (2011) Microstructural parcellation of the human cerebral cortex—from Brodmann’s post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci 5:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–634

    Article  CAS  PubMed  Google Scholar 

  • Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. J Neurophysiol 66:735–743

    CAS  PubMed  Google Scholar 

  • Grafton ST, Woods RP, Mazziotta JC (1993) Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow. Exp Brain Res 95(1):172–176

    Article  CAS  PubMed  Google Scholar 

  • Hansson T, Brismar T (1999) Tactile stimulation of the hand causes bilateral cortical activation: a functional magnetic resonance study in humans. Neurosci Lett 271:29–32

    Article  CAS  PubMed  Google Scholar 

  • Hughlings JJ (1863) Convulsive spasms of the right hand and arm preceding epileptic seizures. Med Times Gaz 1:589

    Google Scholar 

  • Jain N, Qi HX, Collins CE, Kaas JH (2008) Large-scale reorganization in the somatosensory cortex and thalamus after sensory loss in macaque monkeys. J Neurosci 28(43):11042–11060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaas JH, Nelson RJ, Sur M, Lin CS, Merzenich MM (1979) Multiple representations of the body within the primary somatosensory cortex of primates. Science 204(4392):521–523

    Article  CAS  PubMed  Google Scholar 

  • Kampe KK, Jones RA, Auer DP (2000) Frequency dependence of the functional MRI response after electrical median nerve stimulation. Hum Brain Mapp 9(2):106–114

    Article  CAS  PubMed  Google Scholar 

  • Kim SG, Ashe J, Georgopoulos AP, Merkle H, Ellermann JM, Menon RS, Ogawa S, Uğurbil K (1993) Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 69(1):297–302

    CAS  PubMed  Google Scholar 

  • Kleinschmidt A, Nitschke MF, Frahm J (1997) Somatotopy in the human motor cortex hand area. A high-resolution functional MRI study. Eur J Neurosci 9:2178–2186

    Article  CAS  PubMed  Google Scholar 

  • Koopmans PJ, Barth M, Norris DG (2010) Layer-specific BOLD activation in human V1. Hum Brain Mapp 31(9):1297–1304

    Article  PubMed  Google Scholar 

  • Krause T, Kurth R, Ruben J, Schwiemann J, Villringer K, Deuchert M, Moosmann M, Brandt S, Wolf K, Curio G, Villringer A (2001) Representational overlap of adjacent fingers in multiple areas of human primary somatosensory cortex depends on electrical stimulus intensity: an fMRI study. Brain Res 899(1/2):36–46

    Article  CAS  PubMed  Google Scholar 

  • Kurth R, Villringer K, Mackert BM, Schwiemann J, Braun J, Curio G, Villringer A, Wolf KJ (1998) fMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9(2):207–212

    Article  CAS  PubMed  Google Scholar 

  • Kurth R, Villringer K, Curio G, Wolf KJ, Krause T, Repenthin J, Schwiemann J, Deuchert M, Villringer A (2000) fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex. Neuroreport 11(7):1487–1491

    Article  CAS  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lauritzen M (2008) On the neural basis of fMRI signals. Clin Neurophysiol 119(4):729–730

    Article  PubMed  Google Scholar 

  • Lin W, Kuppusamy K, Haacke EM, Burton H (1996) Functional MRI in human somatosensory cortex activated by touching textured surfaces. J Magn Reson Imaging 6:565–572

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  • Maldjian JA, Gottschalk A, Patel RS, Detre JA, Alsop DC (1999) The sensory somatotopic map of the human hand demonstrated at 4 Tesla. Neuroimage 10:55–62

    Article  CAS  PubMed  Google Scholar 

  • Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP, Petrides M (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci U S A 106(47):20069–20074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matelli M, Rizzolatti G, Bettinardi V, Gilardi MC, Perani D, Rizzo G, Fazio F (1993) Activation of precentral and mesial motor areas during the execution of elementary proximal and distal arm movements: a PET study. Neuroreport 4:1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D (1983) Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 8(1):33–55

    Article  CAS  PubMed  Google Scholar 

  • Napadow V, Kettner N, Ryan A, Kwong KK, Audette J, Hui KK (2006) Somatosensory cortical plasticity in carpal tunnel syndrome—a cross-sectional fMRI evaluation. Neuroimage 31(2):520–530

    Article  PubMed  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1. Neuroimage. 52(4):1334–1346

    Article  PubMed Central  PubMed  Google Scholar 

  • Rao SM, Binder JR, Hanuneke TA, Bandettini PA, Bobholz JA, Frost JA, Myklebust BM, Jacobson RD, Hyde JS (1995) Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 45:919–924

    Article  CAS  PubMed  Google Scholar 

  • Rijntjes M, Tegenthoff M, Liepert J, Leonhardt G, Kotterba S, Müller S, Kiebel S, Malin JP, Diener HC, Weiller C (1997) Cortical reorganization in patients with facial palsy. Ann Neurol 41(5):621–630

    Article  CAS  PubMed  Google Scholar 

  • Ritter P, Freyer F, Curio G, Villringer A (2008) High-frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. Neuroimage. 42(2):483–490

    Article  PubMed  Google Scholar 

  • Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30:1168–1187

    Article  PubMed  Google Scholar 

  • Roca P, Rivière D, Guevara P, Poupon C, Mangin JF (2009) Tractography-based parcellation of the cortex using a spatially-informed dimension reduction of the connectivity matrix. Med Image Comput Comput Assist Interv 12(Pt 1):935–942

    PubMed  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol Lond 11:85–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio G, Villringer K, Kurth R, Villringer A (2001) Somatotopic organization of human secondary somatosensory cortex. Cereb Cortex 11(5):463–473

    Article  CAS  PubMed  Google Scholar 

  • Ruben J, Krause T, Taskin B, Blankenburg F, Moosmann M, Villringer A (2006) Sub-area-specific suppressive interaction in the BOLD responses to simultaneous finger stimulation in human primary somatosensory cortex: evidence for increasing rostral-to-caudal convergence. Cereb Cortex 16(6):819–826

    Article  PubMed  Google Scholar 

  • Sakai K, Watanabe E, Onodera Y, Itagaki H, Yamamoto E, Koizumi H, Miyashita Y (1995) Functional mapping of the human somatosensory cortex with echo-planar MRI. Magn Reson Med 33:736–743

    Article  CAS  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP, Thangaraj V, Edelman RR, Warach S (1995) Shared neural substrates controlling hand movements in human motor cortex. Science 268:1175–1771

    Article  Google Scholar 

  • Schweisfurth MA, Schweizer R, Frahm J (2011) Functional MRI indicates consistent intra-digit topographic maps in the little but not the index finger within the human primary somatosensory cortex. Neuroimage 56(4):2138–2143

    Article  PubMed  Google Scholar 

  • Schweizer R, Voit D, Frahm J (2008) Finger representations in human primary somatosensory cortex as revealed by high-resolution functional MRI of tactile stimulation. Neuroimage 42(1):28–35

    Article  PubMed  Google Scholar 

  • Sirotin YB, Das A (2009) Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature 457(7228):475–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stippich C, Hofmann R, Kapfer D, Hempel E, Heiland S, Jansen O, Sartor K (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277:25–28

    Article  CAS  PubMed  Google Scholar 

  • Stringer EA, Chen LM, Friedman RM, Gatenby C, Gore JC (2011) Differentiation of somatosensory cortices by high-resolution fMRI at 7 T. Neuroimage 54(2):1012–1020

    Article  PubMed Central  PubMed  Google Scholar 

  • Thees S, Blankenburg F, Taskin B, Curio G, Villringer A (2003) Source Localisation and fMRI of simultane-ously recorded data during somatosensory categorisation. Neuroimage 18:707–719

    Article  CAS  PubMed  Google Scholar 

  • Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26(37):9494–9502

    Article  CAS  PubMed  Google Scholar 

  • Villringer A, Dirnagl U (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 7(3):240–276

    Google Scholar 

  • Yacoub E, Shmuel A, Logothetis N, Uğurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 37(4):1161–1167

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Villringer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Villringer, A. (2015). fMRI of the Sensorimotor System. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_17

Download citation

Publish with us

Policies and ethics