Skip to main content

Functional MRI of the Visual System

  • Chapter
  • First Online:
fMRI: From Nuclear Spins to Brain Functions

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 30))

  • 3564 Accesses

Abstract

Vision is the dominant sense in humans, and the visual system covers about 25 % of the human cerebral cortex. The visual cortex contains many maps of the visual world and many functional regions implicated in processing distinct perceptual qualities of the visual scene. This chapter provides an overview of the organization and function of visual cortex, as well as specific data-analysis techniques that have emerged from functional magnetic resonance imaging (fMRI) studies of the visual system. These data-analysis techniques go beyond the detection of the presence or absence of an fMRI signal and attempt to reconstruct the properties of the underlying neural population. Last, the chapter covers some of the current issues on visual perception, attention, and disorders of the visual system with a particular focus on contributions from fMRI studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DL, Sincich LC, Horton JC (2007) Complete pattern of ocular dominance columns in human primary visual cortex. J Neurosci 27:10391–10403

    Article  CAS  PubMed  Google Scholar 

  • Alais D, Blake R (2005) Binocular rivalry. MIT, Cambridge

    Google Scholar 

  • Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT + complex. J Neurophysiol 102:2704–2718

    Article  PubMed Central  PubMed  Google Scholar 

  • Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868

    CAS  PubMed  Google Scholar 

  • Appelbaum LG, Wade AR, Vildavski VY, Pettet MW, Norcia AM (2006) Cue-invariant networks for figure and background processing in human visual cortex. J Neurosci 26:11695–11708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arcaro MJ, McMains SA, Singer BD, Kastner S (2009) Retinotopic organization of human ventral visual cortex. J Neurosci 29:10638–10652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avidan G, Harel M, Hendler T, Ben-Bashat D, Zohary E, Malach R (2002) Contrast sensitivity in human visual areas and its relationship to object recognition. J Neurophysiol 87:3102–3116

    PubMed  Google Scholar 

  • Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190

    CAS  PubMed  Google Scholar 

  • Baker CI, Peli E, Knouf N, Kanwisher NG (2005) Reorganization of visual processing in macular degeneration. J Neurosci 25:614–618

    Article  CAS  PubMed  Google Scholar 

  • Baker CI, Dilks DD, Peli E, Kanwisher N (2008) Reorganization of visual processing in macular degeneration: replication and clues about the role of foveal loss. Vision Res 48:1910–1919

    Article  PubMed Central  PubMed  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Tootell RB, Schacter DL, Greve DN, Fischl B, Mendola JD, Rosen BR, Dale AM (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29:529–535

    Article  CAS  PubMed  Google Scholar 

  • Barlow HB (1986) Why have multiple cortical areas? Vision Res 26:81–90

    Article  CAS  PubMed  Google Scholar 

  • Bartels A, Zeki S (2004) Functional brain mapping during free viewing of natural scenes. Human Brain Mapp 21:75–85

    Article  Google Scholar 

  • Baseler HA, Morland AB, Wandell BA (1999) Topographic organization of human visual areas in the absence of input from primary cortex. J Neurosci 19:2619–2627

    CAS  PubMed  Google Scholar 

  • Baseler HA, Brewer AA, Sharpe LT, Morland AB, Jagle H, Wandell BA (2002) Reorganization of human cortical maps caused by inherited photoreceptor abnormalities. Nature Neurosci 5:364–370

    Article  CAS  PubMed  Google Scholar 

  • Baseler HA, Gouws A, Morland AB (2009) The organization of the visual cortex in patients with scotomata resulting from lesions of the central retina. Neuro-Ophthalmol 33:149–157

    Article  Google Scholar 

  • Baseler HA, Gouws A, Haak KV, Racey C, Crossland MD, Tufail A, Rubin GS, Cornelissen FW, Morland AB (2011) Large-scale remapping of visual cortex is absent in adult humans with macular degeneration. Nat Neurosci 14:649–655

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp MS, Cox RW, DeYoe EA (1997) Graded effects of spatial and featural attention on human area MT and associated motion processing areas. J Neurophysiol 78:516–520

    CAS  PubMed  Google Scholar 

  • Belliveau JW, Kennedy DN, Jr., McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  CAS  PubMed  Google Scholar 

  • Bittar RG, Ptito M, Faubert J, Dumoulin SO, Ptito A (1999) Activation of the remaining hemisphere following stimulation of the blind hemifield in hemispherectomized subjects. NeuroImage 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Bles M, Schwarzbach J, De Weerd P, Goebel R, Jansma BM (2006) Receptive field size-dependent attention effects in simultaneously presented stimulus displays. NeuroImage 30:506–511

    Article  PubMed  Google Scholar 

  • Boynton GM (2005) Attention and visual perception. Curr Opin Neurobiol 15:465–469

    Article  CAS  PubMed  Google Scholar 

  • Boynton GM (2011) Spikes, BOLD, attention, and awareness: a comparison of electrophysiological and fMRI signals in V1. J Vision [electronic resource] 11:12

    Google Scholar 

  • Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221

    CAS  PubMed  Google Scholar 

  • Braddick OJ, O'Brien JMD, Wattam-Bell J, Atkinson J, Hartley T, Turner R (2001) Brain areas sensitive to coherent visual motion. Perception 30:61–72

    Article  CAS  PubMed  Google Scholar 

  • Brefczynski JA, DeYoe EA (1999) A physiological correlate of the ‘spotlight’ of visual attention. Nat Neurosci 2:370–374

    Article  CAS  PubMed  Google Scholar 

  • Brewer AA, Liu J, Wade AR, Wandell BA (2005) Visual field maps and stimulus selectivity in human ventral occipital cortex. Nat Neurosci 8:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Bristow D, Haynes JD, Sylvester R, Frith CD, Rees G (2005) Blinking suppresses the neural response to unchanging retinal stimulation. Curr Biol 15:1296–1300

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1903) Beiträge zur histologischen Lokalisation der Grosshirnrinde. II. Der Calcarinustyp. J Psychol Neurol II:133–159

    Google Scholar 

  • Brouwer GJ, Heeger DJ (2009) Decoding and reconstructing color from responses in human visual cortex. J Neurosci 29:13992–14003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brouwer GJ, Heeger DJ (2011) Cross-orientation suppression in human visual cortex. J Neurophysiol 106:2108–2119

    Article  PubMed Central  PubMed  Google Scholar 

  • Brouwer GJ, van Ee R, Schwarzbach J (2005) Activation in visual cortex correlates with the awareness of stereoscopic depth. J Neurosci 25:10403–10413

    Article  CAS  PubMed  Google Scholar 

  • Buchel C, Turner R, Friston K (1997) Lateral geniculate activations can be detected using intersubject averaging and fMRI. Magn Reson Med 38:691–694

    Article  CAS  PubMed  Google Scholar 

  • Buchel C, Josephs O, Rees G, Turner R, Frith CD, Friston KJ (1998) The functional anatomy of attention to visual motion. A functional MRI study. Brain 121(Pt 7):1281–1294

    Article  PubMed  Google Scholar 

  • Buckner RL, Koutstaal W (1998) Functional neuroimaging studies of encoding, priming, and explicit memory retrieval. Proc Nat Acad Sci U S A 95:891–898

    Article  CAS  Google Scholar 

  • Buckner RL, Goodman J, Burock M, Rotte M, Koutstaal W, Schacter D, Rosen B, Dale AM (1998) Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20:285–296

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  • Burke W, Cole AM (1978) Extraretinal influences on the lateral geniculate nucleus. Rev Physiol Biochem Pharmacol 80:105–166

    CAS  PubMed  Google Scholar 

  • Calford MB, Chino YM, Das A, Eysel UT, Gilbert CD, Heinen SJ, Kaas JH, Ullman S (2005) Neuroscience: rewiring the adult brain. Nature 438:E3; discussion E3–4

    Article  CAS  PubMed  Google Scholar 

  • Carlson TA, Rauschenberger R, Verstraten FA (2007) No representation without awareness in the lateral occipital cortex. Psychol Sci 18:298–302

    Article  PubMed  Google Scholar 

  • Casanova C (2004) The visual functions of the pulvinar. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT, Cambridge, pp 592–608

    Google Scholar 

  • Chawla D, Rees G, Friston KJ (1999) The physiological basis of attentional modulation in extrastriate visual areas. Nat Neurosci 2:671–676

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhu XH (2001) Correlation of activation sizes between lateral geniculate nucleus and primary visual cortex in humans. Magn Reson Med 45:202–205

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Kato T, Zhu XH, Ogawa S, Tank DW, Uğurbil K (1998a) Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9:3669–3674

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Kato T, Zhu XH, Strupp J, Ogawa S, Uğurbil K (1998b) Mapping of lateral geniculate nucleus activation during visual stimulation in human brain using fMRI. Magn Reson Med 39:89–96

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhu XH, Thulborn KR, Uğurbil K (1999) Retinotopic mapping of lateral geniculate nucleus in humans using functional magnetic resonance imaging. Proc Nat Acad Sci U S A 96:2430–2434

    Article  CAS  Google Scholar 

  • Cheung SH, Fang F, He S, Legge GE (2009) Retinotopically specific reorganization of visual cortex for tactile pattern recognition. Curr Biol 19:596–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clare MH, Bishop GH (1954) Responses from an association area secondarily activated from optic cortex. J Neurophysiol 17:271–277

    CAS  PubMed  Google Scholar 

  • Cohen L, Dehaene S, Naccache L, Lehericy S, Dehaene-Lambertz G, Henaff MA, Michel F (2000) The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123(Pt 2):291–307

    Article  PubMed  Google Scholar 

  • Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  CAS  PubMed  Google Scholar 

  • Cotton PL, Smith AT (2007) Contralateral visual hemifield representations in the human pulvinar nucleus. J Neurophysiol 98:1600–1609

    Article  PubMed  Google Scholar 

  • Cowey A (1964) Projection of the retina on to striate and prestriate cortex in the squirrel monkey, saimiri sciureus. J Neurophysiol 27:366–393

    CAS  PubMed  Google Scholar 

  • Cowey A, Stoerig P (1991) The neurobiology of blindsight. Trends Neurosci 14:140–145

    Article  CAS  PubMed  Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Nat Acad Sci U S A 81:4586–4590

    Article  CAS  Google Scholar 

  • Crick F, Koch C (1998) Consciousness and neuroscience. Cereb Cortex 8:97–107

    Article  CAS  PubMed  Google Scholar 

  • Culham JC, Kanwisher NG (2001) Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol 11:157–163

    Article  CAS  PubMed  Google Scholar 

  • Culham J, He S, Dukelow S, Verstraten FA (2001) Visual motion and the human brain: what has neuroimaging told us? Acta Psychol 107:69–94

    Article  CAS  Google Scholar 

  • Culham JC, Danckert SL, DeSouza JF, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189

    Article  PubMed  Google Scholar 

  • Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex in monkeys. J Physiol 159:203–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dehaene S (2005) Evolution of human cortical circuits for reading and arithmetic: the “neuronal recycling” hypothesis. In: Dehaene S, Duhamel JR, Hauser M, Rizzolatti G (eds) From monkey brain to human brain. MIT, Cambridge, pp 133–157

    Google Scholar 

  • Dehaene S, Cohen L (2007) Cultural recycling of cortical maps. Neuron 56:384–398

    Article  CAS  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  CAS  PubMed  Google Scholar 

  • DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Nat Acad Sci U S A 93:2382–2386

    Article  CAS  Google Scholar 

  • Dilks DD, Baker CI, Peli E, Kanwisher N (2009) Reorganization of visual processing in macular degeneration is not specific to the “preferred retinal locus”. J Neurosci 29:2768–2773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15:95–111

    Article  PubMed  Google Scholar 

  • Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA (2003) Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J Vision [electronic resource] 3:586–598

    Article  Google Scholar 

  • Dougherty RF, Ben-Shachar M, Bammer R, Brewer AA, Wandell BA (2005) Functional organization of human occipital-callosal fiber tracts. Proc Nat Acad Sci U S A 102:7350–7355

    Article  CAS  Google Scholar 

  • Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science 293:2470–2473

    Article  CAS  PubMed  Google Scholar 

  • DuBois RM, Cohen MS (2000) Spatiotopic organization in human superior colliculus observed with fMRI. Neuroimage 12:63–70

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin SO, Hess RF (2006) Modulation of V1 activity by shape: image-statistics or shape-based perception? J Neurophysiol 95:3654–3664

    Article  PubMed  Google Scholar 

  • Dumoulin SO, Wandell BA (2008) Population receptive field estimates in human visual cortex. NeuroImage 39:647–660

    Article  PubMed Central  PubMed  Google Scholar 

  • Dumoulin SO, Bittar RG, Kabani NJ, Baker CL, Jr., Le Goualher G, Bruce Pike G, Evans AC (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10:454–463

    Article  CAS  PubMed  Google Scholar 

  • Dumoulin SO, Hoge RD, Baker CL, Jr., Hess RF, Achtman RL, Evans AC (2003) Automatic volumetric segmentation of human visual retinotopic cortex. NeuroImage 18:576–587

    Article  PubMed  Google Scholar 

  • Dumoulin SO, Jirsch JD, Bernasconi A (2007) Functional organization of human visual cortex in occipital polymicrogyria. Hum Brain Mapp 28:1302–1312

    Article  PubMed  Google Scholar 

  • Duncan RO, Boynton GM (2003) Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38:659–671

    Article  CAS  PubMed  Google Scholar 

  • Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L (1994) Many areas in the human brain respond to visual motion. Journal of neurophysiology 72:1420–1424

    CAS  PubMed  Google Scholar 

  • Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369:525

    Article  CAS  PubMed  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    Article  CAS  PubMed  Google Scholar 

  • Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601

    Article  CAS  PubMed  Google Scholar 

  • Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125

    Google Scholar 

  • Fang F, Kersten D, Murray SO (2008) Perceptual grouping and inverse fMRI activity patterns in human visual cortex. J Vision [electronic resource] 8:2.1–9

    Google Scholar 

  • Faubert J, Diaconu V, Ptito M, Ptito A (1999) Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye. Vision Res 39:149–157

    Google Scholar 

  • Feldman JA, Ballard DH (1982) Connectionist models and their properties. Cogn Sci 6:205–254

    Article  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  • Fendrich R, Wessinger CM, Gazzaniga MS (1992) Residual vision in a scotoma: implications for blindsight. Science 258:1489–1491

    Article  CAS  PubMed  Google Scholar 

  • Fendrich R, Wessinger CM, Gazzaniga MS (2001) Speculations on the neural basis of islands of blindsight. Prog Brain Res 134:353–366

    Article  CAS  PubMed  Google Scholar 

  • Fine I, Wade AR, Brewer AA, May MG, Goodman DF, Boynton GM, Wandell BA, MacLeod DI (2003) Long-term deprivation affects visual perception and cortex. Nat Neurosci 6:915–916

    Article  CAS  PubMed  Google Scholar 

  • Fischer J, Whitney D (2009) Precise discrimination of object position in the human pulvinar. Hum Brain Mapp 30:101–111

    Article  PubMed Central  PubMed  Google Scholar 

  • Fishman RS (1997) Gordon Holmes, the cortical retina, and the wounds of war. The seventh Charles B. Snyder Lecture. Doc Ophthalmol 93:9–28

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Miezin FM, Allman JM, Van Essen DC, Raichle ME (1987) Retinotopic organization of human visual cortex mapped with positron-emission tomography. J Neurosci 7:913–922

    CAS  PubMed  Google Scholar 

  • Freeman AW (2005) Multistage model for binocular rivalry. J Neurophysiol 94:4412–4420

    Google Scholar 

  • Fries P, Roelfsema PR, Engel AK, Konig P, Singer W (1997) Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Nat Acad Sci U S A 94:12699–12704

    Google Scholar 

  • Friston KJ, Rotshtein P, Geng JJ, Sterzer P, Henson RN (2006) A critique of functional localisers. Neuroimage 30:1077–1087

    Google Scholar 

  • Fujita N, Tanaka H, Takanashi M, Hirabuki N, Abe K, Yoshimura H, Nakamura H (2001) Lateral geniculate nucleus: anatomic and functional identification by use of MR imaging. Ajnr 22:1719–1726

    Google Scholar 

  • Gandhi SP, Heeger DJ, Boynton GM (1999) Spatial attention affects brain activity in human primary visual cortex. Proc Nat Acad Sci U S A 96:3314–3319

    Google Scholar 

  • Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3:191–197

    Google Scholar 

  • Giaschi D, Jan JE, Bjornson B, Young SA, Tata M, Lyons CJ, Good WV, Wong PK (2003) Conscious visual abilities in a patient with early bilateral occipital damage. Dev Med Child Neurol 45:772–781

    Google Scholar 

  • Gilbert CD, Li W, Piech V (2009) Perceptual learning and adult cortical plasticity. J Physiol 587:2743–2751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goebel R, Muckli L, Zanella FE, Singer W, Stoerig P (2001) Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Res 41:1459–1474

    Article  CAS  PubMed  Google Scholar 

  • Goesaert E, Op de Beeck HP (2010) Continuous mapping of the cortical object vision pathway using traveling waves in object space. Neuroimage 49:3248–3256

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  CAS  PubMed  Google Scholar 

  • Gregory RL, Wallace JG (1963) Recovery from early blindness: a case study. Experimental Psychology Society Monograph 2

    Google Scholar 

  • Grieve KL, Acuna C, Cudeiro J (2000) The primate pulvinar nuclei: vision and action. Trends Neurosci 23:35–39

    Article  CAS  PubMed  Google Scholar 

  • Grill-Spector K (2003) The neural basis of object perception. Curr Opin Neurobiol 13:159–166

    Article  CAS  PubMed  Google Scholar 

  • Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol 107:293–321

    Article  CAS  Google Scholar 

  • Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R (1998) A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp 6:316–328

    Article  CAS  PubMed  Google Scholar 

  • Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203

    Article  CAS  PubMed  Google Scholar 

  • Grill-Spector K, Kushnir T, Hendler T, Malach R (2000) The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci 3:837–843

    Article  CAS  PubMed  Google Scholar 

  • Hadjikhani N, Liu AK, Dale AM, Cavanagh P, Tootell RB (1998) Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci 1:235–241

    Article  CAS  PubMed  Google Scholar 

  • Hagler DJ, Jr., Sereno MI (2006) Spatial maps in frontal and prefrontal cortex. Neuroimage 29:567–577

    Article  PubMed  Google Scholar 

  • Hagler DJ, Jr., Riecke L, Sereno MI (2007) Parietal and superior frontal visuospatial maps activated by pointing and saccades. Neuroimage 35:1562–1577

    Article  PubMed Central  PubMed  Google Scholar 

  • Hansen KA, David SV, Gallant JL (2004) Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response. Neuroimage 23:233–241

    Article  PubMed  Google Scholar 

  • Hansen KA, Kay KN, Gallant JL (2007) Topographic organization in and near human visual area V4. J Neurosci 27:11896–11911

    Article  CAS  PubMed  Google Scholar 

  • Harvey BM, Dumoulin SO (2011) The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture. J Neurosci 31:13604–13612

    Article  CAS  PubMed  Google Scholar 

  • Hasson U, Levy I, Behrmann M, Hendler T, Malach R (2002) Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:479–490

    Article  CAS  PubMed  Google Scholar 

  • Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical activity during natural vision. Science 303:1634–1640

    Article  CAS  PubMed  Google Scholar 

  • Haxby JV, Ungerleider LG, Horwitz B, Maisog JM, Rapoport SI, Grady CL (1996) Face encoding and recognition in the human brain. Proc Nat Acad Sci U S A 93:922–927

    Article  CAS  Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  CAS  PubMed  Google Scholar 

  • Haynes JD, Rees G (2005a) Predicting the stream of consciousness from activity in human visual cortex. Curr Biol 15:1301–1307

    Article  CAS  PubMed  Google Scholar 

  • Haynes JD, Rees G (2005b) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686–691

    Article  CAS  PubMed  Google Scholar 

  • Haynes JD, Deichmann R, Rees G (2005) Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus. Nature 438:496–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hegde J (2009) How reliable is the pattern adaptation technique? A modeling study. J Neurophysiol 102:2245–2252

    Article  PubMed  Google Scholar 

  • Heinzle J, Kahnt T, Haynes JD (2011) Topographically specific functional connectivity between visual field maps in the human brain. Neuroimage 56:1426–1436

    Article  PubMed  Google Scholar 

  • Henschen SE (1893) On the visual path and centre. Brain 16:170–180

    Article  Google Scholar 

  • Herrmann K, Montaser-Kouhsari L, Carrasco M, Heeger DJ (2010) When size matters: attention affects performance by contrast or response gain. Nat Neurosci 13:1554–1559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hess RF, Thompson B, Gole G, Mullen KT (2009) Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci 29:1064–1070

    Article  PubMed Central  PubMed  Google Scholar 

  • Hess RF, Thompson B, Gole GA, Mullen KT (2010) The amblyopic deficit and its relationship to geniculo-cortical processing streams. J Neurophysiol 104:475–483

    Article  PubMed  Google Scholar 

  • Hoffmann MB, Tolhurst DJ, Moore AT, Morland AB (2003) Organization of the visual cortex in human albinism. J Neurosci 23:8921–8930

    CAS  PubMed  Google Scholar 

  • Hohwy J, Roepstorff A, Friston K (2008) Predictive coding explains binocular rivalry: an epistemological review. Cognition 108:687–701

    Article  PubMed  Google Scholar 

  • Holmes G (1918) Disturbances of vision by cerebral lesions. Br J Ophthalmol 2:353–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horton JC, Hoyt WF (1991a) Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. Brain 114(Pt 4):1703–1718

    Article  PubMed  Google Scholar 

  • Horton JC, Hoyt WF (1991b) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 109:816–824

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the Cat. J Neurophysiol 28:229–289

    CAS  PubMed  Google Scholar 

  • Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22:7195–7205

    CAS  PubMed  Google Scholar 

  • Inouye T (1909) Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre nach Beobachtungen an Versundeten der letzten Japanische Kriege. W. Engelmann, Leipzig

    Google Scholar 

  • James TW, Humphrey GK, Gati JS, Menon RS, Goodale MA (2000) The effects of visual object priming on brain activation before and after recognition. Curr Biol 10:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • James TW, Humphrey GK, Gati JS, Menon RS, Goodale MA (2002) Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. Neuron 35:793–801

    Article  CAS  PubMed  Google Scholar 

  • James W (1890) The principles of psychology. Holt, New York

    Book  Google Scholar 

  • Jancke D, Erlhagen W, Schoner G, Dinse HR (2004) Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. J Physiol 556:971–982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kanwisher N (2010) Functional specificity in the human brain: a window into the functional architecture of the mind. Proc Nat Acad Sci U S A 107:11163–11170

    Article  CAS  Google Scholar 

  • Kanwisher N, Wojciulik E (2000) Visual attention: insights from brain imaging. Nat Rev Neurosci 1:91–100

    Article  CAS  PubMed  Google Scholar 

  • Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    CAS  PubMed  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Article  CAS  PubMed  Google Scholar 

  • Kastner S, De Weerd P, Desimone R, Ungerleider LG (1998) Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282:108–111

    Article  CAS  PubMed  Google Scholar 

  • Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22:751–761

    Article  CAS  PubMed  Google Scholar 

  • Kastner S, De Weerd P, Pinsk MA, Elizondo MI, Desimone R, Ungerleider LG (2001) Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. J Neurophysiol 86:1398–1411

    CAS  PubMed  Google Scholar 

  • Kastner S, O'Connor DH, Fukui MM, Fehd HM, Herwig U, Pinsk MA (2004) Functional imaging of the human lateral geniculate nucleus and pulvinar. J Neurophysiol 91:438–448

    Article  PubMed  Google Scholar 

  • Kastner S, DeSimone K, Konen CS, Szczepanski SM, Weiner KS, Schneider KA (2007) Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. J Neurophysiol 97:3494–3507

    Article  PubMed  Google Scholar 

  • Kay KN, Naselaris T, Prenger RJ, Gallant JL (2008) Identifying natural images from human brain activity. Nature 452:352–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knapen T, Brascamp J, Pearson J, van Ee R, Blake R (2011) The role of frontal and parietal brain areas in bistable perception. J Neurosci 31:10293–10301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kolster H, Peeters R, Orban GA (2010) The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 30:9801–9820

    Article  CAS  PubMed  Google Scholar 

  • Konen CS, Kastner S (2008) Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J Neurosci 28:8361–8375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krekelberg B, Boynton GM, van Wezel RJ (2006) Adaptation: from single cells to BOLD signals. Trends Neurosci 29:250–256

    Article  CAS  PubMed  Google Scholar 

  • Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12:535–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krubitzer L (2009) In search of a unifying theory of complex brain evolution. Ann N Y Acad Sci 1156:44–67

    Article  PubMed Central  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Nat Acad Sci U S A 89:5675–5679

    Article  CAS  Google Scholar 

  • Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26:13128–13142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lauritzen M, Gold L (2003) Brain function and neurophysiological correlates of signals used in functional neuroimaging. J Neurosci 23:3972–3980

    CAS  PubMed  Google Scholar 

  • Lee SH, Blake R, Heeger DJ (2005) Traveling waves of activity in primary visual cortex during binocular rivalry. Nat Neurosci 8:22–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SH, Blake R, Heeger DJ (2007) Hierarchy of cortical responses underlying binocular rivalry. Nat Neurosci 10:1048–1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Legge GE (2007) Psychophysics of reading in normal and low vision. Lawrence Erlbaum Associates Inc, New Jersey

    Google Scholar 

  • Leh SE, Johansen-Berg H, Ptito A (2006) Unconscious vision: new insights into the neuronal correlate of blindsight using diffusion tractography. Brain 129:1822–1832

    Article  PubMed  Google Scholar 

  • Lehky SR, Maunsell JH (1996) No binocular rivalry in the LGN of alert macaque monkeys. Vision Res 36:1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Leibowitz HM, Krueger DE, Maunder LR, Milton RC, Kini MM, Kahn HA, Nickerson RJ, Pool J, Colton TL, Ganley JP, Loewenstein JI, Dawber TR (1980) The Framingham Eye Study monograph: An ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973–1975. Surv Ophthalmol 24:335–610

    Article  CAS  PubMed  Google Scholar 

  • Lennie P (1998) Single units and visual cortical organization. Perception 27:889–935

    Article  CAS  PubMed  Google Scholar 

  • Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature 379:549–553

    Article  CAS  PubMed  Google Scholar 

  • Lerner Y, Hendler T, Ben-Bashat D, Harel M, Malach R (2001) A hierarchical axis of object processing stages in the human visual cortex. Cereb Cortex 11:287–297

    Article  CAS  PubMed  Google Scholar 

  • Leuba G, Garey LJ (1989) Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man. Exp Brain Res 77:31–38

    Article  CAS  PubMed  Google Scholar 

  • Levin N, Dumoulin SO, Winawer J, Dougherty RF, Wandell BA (2010) Cortical maps and white matter tracts following long period of visual deprivation and retinal image restoration. Neuron 65:21–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy I, Hasson U, Avidan G, Hendler T, Malach R (2001) Center-periphery organization of human object areas. Nat Neurosci 4:533–539

    CAS  PubMed  Google Scholar 

  • Li X, Dumoulin SO, Mansouri B, Hess RF (2007) The fidelity of the cortical retinotopic map in human amblyopia. Eur J Neurosci 25:1265–1277

    Article  PubMed  Google Scholar 

  • Liu T, Pestilli F, Carrasco M (2005) Transient attention enhances perceptual performance and FMRI response in human visual cortex. Neuron 45:469–477

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Cheung SH, Schuchard R, Glielmi C, Hu X, He S, Legge GE (2010) Incomplete cortical reorganization in macular degeneration. Invest Ophthalmol Vis Sci 51:6826–6834

    Article  PubMed Central  PubMed  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Perthen JE, Duncan RO, Zangwill LM, Liu TT (2008) Noninvasive measurement of the cerebral blood flow response in human lateral geniculate nucleus with arterial spin labeling fMRI. Hum Brain Mapp 29:1207–1214

    Article  PubMed Central  PubMed  Google Scholar 

  • Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77:24–42

    CAS  PubMed  Google Scholar 

  • Lumer ED, Friston KJ, Rees G (1998) Neural correlates of perceptual rivalry in the human brain. Science 280:1930–1934

    Article  CAS  PubMed  Google Scholar 

  • Maguire EA, Frith CD, Burgess N, Donnett JG, O'Keefe J (1998) Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci 10:61–76

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Wilke M, Aura C, Zhu C, Ye FQ, Leopold DA (2008) Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey. Nat Neurosci 11:1193–1200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Nat Acad Sci U S A 92:8135–8139

    Article  CAS  Google Scholar 

  • Marr D (1982) Vision. W. H. Freeman and Compagny, New York

    Google Scholar 

  • Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2:364–369

    Article  CAS  PubMed  Google Scholar 

  • Masuda Y, Dumoulin SO, Nakadomari S, Wandell BA (2008) V1 projection zone signals in human macular degeneration depend on task, not stimulus. Cereb Cortex 18:2483–2493

    Article  PubMed Central  PubMed  Google Scholar 

  • Masuda Y, Horiguchi H, Dumoulin SO, Furuta A, Miyauchi S, Nakadomari S, Wandell BA (2010) Task-dependent V1 responses in human retinitis pigmentosa. Invest Ophthalmol Vis Sci 51:5356–5364

    Article  PubMed Central  PubMed  Google Scholar 

  • McCarthy G, Spicer M, Adrignolo A, Luby M, Gore J, Allison T (1994) Brain activation associated with visual motion studied by functional magnetic resonance imaging in humans. Hum Brain Mapp 2:234–243

    Article  Google Scholar 

  • Miki A, Raz J, Haselgrove JC, van Erp TG, Liu CS, Liu GT (2000) Functional magnetic resonance imaging of lateral geniculate nucleus at 1.5 T. J Neuroophthalmol 20:285–287

    Article  CAS  PubMed  Google Scholar 

  • Miki A, Liu GT, Goldsmith ZG, Liu CS, Haselgrove JC (2003) Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging. Ophthalmologica 217:365–369

    Article  PubMed  Google Scholar 

  • Miyawaki Y, Uchida H, Yamashita O, Sato MA, Morito Y, Tanabe HC, Sadato N, Kamitani Y (2008) Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60:915–929

    Article  CAS  PubMed  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–784

    Article  CAS  PubMed  Google Scholar 

  • Morland AB, Le S, Carroll E, Hoffmann MB, Pambakian A (2004) The role of spared calcarine cortex and lateral occipital cortex in the responses of human hemianopes to visual motion. J Cogn Neurosci 16:204–218

    Article  PubMed  Google Scholar 

  • Motter BC (2009) Central V4 receptive fields are scaled by the V1 cortical magnification and correspond to a constant-sized sampling of the V1 surface. J Neurosci 29:5749–5757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muckli L, Naumer MJ, Singer W (2009) Bilateral visual field maps in a patient with only one hemisphere. Proc Nat Acad Sci U S A 106:13034–13039

    Article  CAS  Google Scholar 

  • Mullen KT, Dumoulin SO, Hess RF (2008) Color responses of the human lateral geniculate nucleus: [corrected] selective amplification of S-cone signals between the lateral geniculate nucleno and primary visual cortex measured with high-field fMRI. Eur J Neurosci 28:1911–1923

    Article  PubMed Central  PubMed  Google Scholar 

  • Murray SO, Wojciulik E (2004) Attention increases neural selectivity in the human lateral occipital complex. Nat Neurosci 7:70–74

    Article  CAS  PubMed  Google Scholar 

  • Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL (2002) Shape perception reduces activity in human primary visual cortex. Proc Nat Acad Sci U S A 99:15164–15169

    Article  CAS  Google Scholar 

  • Myerson J, Miezin FM, Allman JM (1981) Binocular rivalry in macaque monkeys and humans: a comparative study in perception. Behav Anal Lett 1:149–159

    Google Scholar 

  • Nemesius (1636) The nature of man: a learned and useful tract written in Greek by Nemesius, surnamed the philosopher; sometime Bishop of a city in Phoenicia, and one of the most ancient Fathers of the Church. Englished, and divided into sections, with briefs of their principal contents: by Geo: Wither. London: Printed by M[iles] F[lesher] for Henry Taunton in St. Dunstans Churchyard in Fleetstreet

    Google Scholar 

  • Nielsen (2009) Three screen report: television, internet and mobile usage in the U.S. The Nielsen Company, New York

    Google Scholar 

  • Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 10:424–430

    Article  PubMed  Google Scholar 

  • O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5:1203–1209

    Article  PubMed  CAS  Google Scholar 

  • O’Craven KM, Rosen BR, Kwong KK, Treisman A, Savoy RL (1997) Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18:591–598

    Article  PubMed  Google Scholar 

  • O’Craven KM, Downing PE, Kanwisher N (1999) fMRI evidence for objects as the units of attentional selection. Nature 401:584–587

    Article  PubMed  Google Scholar 

  • O’Toole AJ, Jiang F, Abdi H, Haxby JV (2005) Partially distributed representations of objects and faces in ventral temporal cortex. J Cogn Neurosci 17:580–590

    Article  PubMed  Google Scholar 

  • Ofcom (2010) Ofcom communications market report. Ofcom, London

    Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Uğurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Nat Acad Sci U S A 89:5951–5955

    Article  CAS  Google Scholar 

  • Olman C, Ronen I, Uğurbil K, Kim DS (2003) Retinotopic mapping in cat visual cortex using high-field functional magnetic resonance imaging. J Neurosci Meth 131:161–170

    Article  Google Scholar 

  • Op de Beeck HP, Haushofer J, Kanwisher NG (2008) Interpreting fMRI data: maps, modules and dimensions. Nat Rev Neurosci 9:123–135

    Article  CAS  Google Scholar 

  • Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8:315–324

    Article  PubMed  Google Scholar 

  • Ostrovsky Y, Andalman A, Sinha P (2006) Vision following extended congenital blindness. Psychol Sci 17:1009–1014

    Article  PubMed  Google Scholar 

  • Peelen MV, Downing PE (2007) The neural basis of visual body perception. Nat Rev Neurosci 8:636–648

    Article  CAS  PubMed  Google Scholar 

  • Pessoa L, Kastner S, Ungerleider LG (2003) Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J Neurosci 23:3990–3998

    CAS  PubMed  Google Scholar 

  • Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S (2009) Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. J Neurophysiol 101:2581–2600

    Article  PubMed Central  PubMed  Google Scholar 

  • Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26:7962–7973

    Article  CAS  PubMed  Google Scholar 

  • Polonsky A, Blake R, Braun J, Heeger DJ (2000) Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 3:1153–1159

    Article  CAS  PubMed  Google Scholar 

  • Poppel E, Held R, Frost D (1973) Residual visual function after brain wounds involving the central visual pathways in man. Nature 243:295–296

    Article  CAS  PubMed  Google Scholar 

  • Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA (2001) Visual areas and spatial summation in human visual cortex. Vision Res 41:1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Puce A, Allison T, Asgari M, Gore JC, McCarthy G (1996) Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci 16:5205–5215

    CAS  PubMed  Google Scholar 

  • Rainer G, Augath M, Trinath T, Logothetis NK (2002) The effect of image scrambling on visual cortical BOLD activity in the anesthetized monkey. Neuroimage 16:607–616

    Article  PubMed  Google Scholar 

  • Raizada RDS, Kriegeskorte N (2010) Pattern-Information fMRI: New Questions Which It Opens Up and Challenges Which Face It. Int J Imag Syst Technol 20:31–41

    Article  Google Scholar 

  • Rajimehr R, Young JC, Tootell RB (2009) An anterior temporal face patch in human cortex, predicted by macaque maps. Proc Nat Acad Sci U S A 106:1995–2000

    Article  CAS  Google Scholar 

  • Reich L, Szwed M, Cohen L, Amedi A (2011) A ventral visual stream reading center independent of visual experience. Curr Biol 21:363–368

    Article  CAS  PubMed  Google Scholar 

  • Ress D, Heeger DJ (2003) Neuronal correlates of perception in early visual cortex. Nat Neurosci 6:414–420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ress D, Backus BT, Heeger DJ (2000) Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci 3:940–945

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61:168–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19:1736–1753

    CAS  PubMed  Google Scholar 

  • Riddoch G (1917) Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain 40:15–57

    Article  Google Scholar 

  • Rijpkema M, van Aalderen SI, Schwarzbach JV, Verstraten FA (2008) Activation patterns in visual cortex reveal receptive field size-dependent attentional modulation. Brain Res 1189:90–96

    Article  CAS  PubMed  Google Scholar 

  • Robinson DL, McClurkin JW (1989) The visual superior colliculus and pulvinar. Rev Oculomot Res 3:337–360

    CAS  PubMed  Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    Article  CAS  PubMed  Google Scholar 

  • Rokers B, Cormack LK, Huk AC (2009) Disparity- and velocity-based signals for three-dimensional motion perception in human MT +. Nat Neurosci 12:1050–1055

    Article  CAS  PubMed  Google Scholar 

  • Rosa MG, Krubitzer LA (1999) The evolution of visual cortex: where is V2? Trends Neurosci 22:242–248

    Article  CAS  PubMed  Google Scholar 

  • Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E (2003) A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126:2381–2395

    Article  PubMed  Google Scholar 

  • Saalmann YB, Kastner S (2009) Gain control in the visual thalamus during perception and cognition. Curr Opin Neurobiol 19:408–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saenz M, Lewis LB, Huth AG, Fine I, Koch C (2008) Visual motion area MT + /V5 responds to auditory motion in human sight-recovery subjects. J Neurosci 28:5141–5148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saproo S, Serences JT (2010) Spatial attention improves the quality of population codes in human visual cortex. J Neurophysiol 104:885–895

    Article  PubMed Central  PubMed  Google Scholar 

  • Saxe R, Brett M, Kanwisher N (2006) Divide and conquer: a defense of functional localizers. Neuroimage 30:1088–1096; discussion 1097–1089

    Article  PubMed  Google Scholar 

  • Schira MM, Wade AR, Tyler CW (2007) Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. J Neurophysiol 97:4284–4295

    Article  PubMed  Google Scholar 

  • Schira MM, Tyler CW, Breakspear M, Spehar B (2009) The foveal confluence in human visual cortex. J Neurosci 29:9050–9058

    Article  CAS  PubMed  Google Scholar 

  • Schira MM, Tyler CW, Spehar B, Breakspear M (2010) Modeling magnification and anisotropy in the primate foveal confluence. PLoS Comput Biol 6:e1000651

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94:1372–1384

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmid MC, Panagiotaropoulos T, Augath MA, Logothetis NK, Smirnakis SM (2009) Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex. PLoS ONE 4:e5527

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmid MC, Mrowka SW, Turchi J, Saunders RC, Wilke M, Peters AJ, Ye FQ, Leopold DA (2010) Blindsight depends on the lateral geniculate nucleus. Nature 466:373–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider KA, Kastner S (2005) Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. J Neurophysiol 94:2491–2503

    Article  PubMed  Google Scholar 

  • Schneider KA, Kastner S (2009) Effects of sustained spatial attention in the human lateral geniculate nucleus and superior colliculus. J Neurosci 29:1784–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider KA, Richter MC, Kastner S (2004) Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study. J Neurosci 24:8975–8985

    Article  CAS  PubMed  Google Scholar 

  • Schneider W, Noll DC, Cohen JD (1993) Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365:150–153

    Article  CAS  PubMed  Google Scholar 

  • Schumacher EH, Jacko JA, Primo SA, Main KL, Moloney KP, Kinzel EN, Ginn J (2008) Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration. Restor Neurol Neurosci 26:391–402

    PubMed  Google Scholar 

  • Schwartz EL (1977) Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biol Cybern 25:181–194

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Tootell RB (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15:135–144

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, McDonald CT, Allman JM (1994) Analysis of retinotopic maps in extrastriate cortex. Cereb Cortex 4:601–620

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Sergent J, Signoret JL (1992) Functional and anatomical decomposition of face processing: evidence from prosopagnosia and PET study of normal subjects. Philos Trans R Soc Lond 335:55–61; discussion 61–52

    Article  CAS  Google Scholar 

  • Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond 357:1695–1708

    Article  Google Scholar 

  • Sherman SM, Koch C (1986) The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp Brain Res 63:1–20

    Article  CAS  PubMed  Google Scholar 

  • Shmuelof L, Zohary E (2005) Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron 47:457–470

    Article  CAS  PubMed  Google Scholar 

  • Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13:488–495

    Article  PubMed Central  PubMed  Google Scholar 

  • Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94:1358–1371

    Article  PubMed Central  PubMed  Google Scholar 

  • Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Singer W (1977) Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiol Rev 57:386–420

    CAS  PubMed  Google Scholar 

  • Smirnakis SM, Brewer AA, Schmid MC, Tolias AS, Schuz A, Augath M, Inhoffen W, Wandell BA, Logothetis NK (2005) Lack of long-term cortical reorganization after macaque retinal lesions. Nature 435:300–307

    Article  CAS  PubMed  Google Scholar 

  • Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18:3816–3830

    CAS  PubMed  Google Scholar 

  • Smith AT, Singh KD, Williams AL, Greenlee MW (2001) Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cereb Cortex 11:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2010) Network modelling methods for FMRI. Neuroimage 54(2):875–891

    Article  PubMed  Google Scholar 

  • Somers DC, Dale AM, Seiffert AE, Tootell RB (1999) Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc Nat Acad Sci U S A 96:1663–1668

    Article  CAS  Google Scholar 

  • Sparks DL (1988) Neural cartography: sensory and motor maps in the superior colliculus. Brain Behav Evol 31:49–56

    Article  CAS  PubMed  Google Scholar 

  • Stenbacka L, Vanni S (2007) fMRI of peripheral visual field representation. Clin Neurophysiol 118:1303–1314

    Article  PubMed  Google Scholar 

  • Stensaas SS, Eddington DK, Dobelle WH (1974) The topography and variability of the primary visual cortex in man. J Neurosurg 40:747–755

    Article  CAS  PubMed  Google Scholar 

  • Sterzer P, Kleinschmidt A, Rees G (2009) The neural bases of multistable perception. Trends Cogn Sci 13:310–318

    Article  PubMed  Google Scholar 

  • Stoerig P, Cowey A (1997) Blindsight in man and monkey. Brain 120(Pt 3):535–559

    Article  PubMed  Google Scholar 

  • Sunness JS, Liu T, Yantis S (2004) Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. Ophthalmology 111:1595–1598

    Article  PubMed  Google Scholar 

  • Sutter EE, Tran D (1992) The field topography of ERG components in man–I. The photopic luminance response. Vision Res 32:433–446

    Article  CAS  PubMed  Google Scholar 

  • Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27:5326–5337

    Article  CAS  PubMed  Google Scholar 

  • Sylvester R, Rees G (2006) Extraretinal saccadic signals in human LGN and early retinotopic cortex. NeuroImage 30:214–219

    Article  PubMed  Google Scholar 

  • Sylvester R, Haynes JD, Rees G (2005) Saccades differentially modulate human LGN and V1 responses in the presence and absence of visual stimulation. Curr Biol 15:37–41

    Article  CAS  PubMed  Google Scholar 

  • Sylvester R, Josephs O, Driver J, Rees G (2007) Visual FMRI responses in human superior colliculus show a temporal-nasal asymmetry that is absent in lateral geniculate and visual cortex. J Neurophysiol 97:1495–1502

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Thirion B, Duchesnay E, Hubbard E, Dubois J, Poline JB, Lebihan D, Dehaene S (2006) Inverse retinotopy: Inferring the visual content of images from brain activation patterns. Neuroimage 33:1104–1116

    Article  PubMed  Google Scholar 

  • Thompson JM, Woolsey CN, Talbot SA (1950) Visual areas I and II of cerebral cortex of rabbit. J Neurophysiol 13:277–288

    CAS  PubMed  Google Scholar 

  • Tong F, Engel SA (2001) Interocular rivalry revealed in the human cortical blind-spot representation. Nature 411:195–199

    Article  CAS  PubMed  Google Scholar 

  • Tong F, Nakayama K, Vaughan JT, Kanwisher N (1998) Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21:753–759

    Article  CAS  PubMed  Google Scholar 

  • Tootell RB, Hadjikhani N (2001) Where is ‘dorsal V4’ in human visual cortex? Retinotopic, topographic and functional evidence. Cereb Cortex 11:298–311

    Article  CAS  PubMed  Google Scholar 

  • Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    CAS  PubMed  Google Scholar 

  • Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7060–7078

    CAS  PubMed  Google Scholar 

  • Tootell RB, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, Dale AM (1998a) The retinotopy of visual spatial attention. Neuron 21:1409–1422

    Article  CAS  PubMed  Google Scholar 

  • Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998b) Functional analysis of primary visual cortex (V1) in humans. Proc Nat Acad Sci U S A 95:811–817

    Article  CAS  Google Scholar 

  • Tootell RB, Tsao D, Vanduffel W (2003) Neuroimaging weighs in: humans meet macaques in “primate” visual cortex. J Neurosci 23:3981–3989

    CAS  PubMed  Google Scholar 

  • Tootell RB, Devaney KJ, Young JC, Postelnicu G, Rajimehr R, Ungerleider LG (2008) fMRI mapping of a morphed continuum of 3D shapes within inferior temporal cortex. Proc Nat Acad Sci U S A 105:3605–3609

    Article  CAS  Google Scholar 

  • Treue S (2001) Neural correlates of attention in primate visual cortex. Trends Neurosci 24:295–300

    Article  CAS  PubMed  Google Scholar 

  • Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177:213–235

    Article  CAS  PubMed  Google Scholar 

  • Tyler CW, Likova LT, Chen CC, Kontsevich LL, Schira MM, Wade AR (2005) Extended concepts of occipital retinotopy. Curr Med Imag Rev 1:319–329

    Article  Google Scholar 

  • Uğurbil K, Hu X, Chen W, Zhu XH, Kim SG, Georgopoulos A (1999) Functional mapping in the human brain using high magnetic fields. Philos Trans R Soc Lond 354:1195–1213

    Article  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale M, Mansfield RJW (eds) The analysis of visual behaviour. MIT, Cambridge, pp 549–586

    Google Scholar 

  • Valyear KF, Culham JC, Sharif N, Westwood D, Goodale MA (2006) A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: a human fMRI study. Neuropsychologia 44:218–228

    Article  PubMed  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Article  PubMed  Google Scholar 

  • Van Essen DC (2003) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT, Cambridge, pp 507–521

    Google Scholar 

  • Van Essen DC, Maunsell JH (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6:370–375

    Article  Google Scholar 

  • Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577

    Article  CAS  PubMed  Google Scholar 

  • Vanni S, Henriksson L, James AC (2005) Multifocal fMRI mapping of visual cortical areas. NeuroImage 27:95–105

    Article  CAS  PubMed  Google Scholar 

  • Victor JD, Purpura K, Katz E, Mao B (1994) Population encoding of spatial frequency, orientation, and color in macaque V1. J Neurophysiol 72:2151–2166

    CAS  PubMed  Google Scholar 

  • von Helmholtz H (1867) Treatise on physiological optics. In: Southall JPC (ed) Handbuch der Physiologischen Optik (Transl. from the 3rd German edition), vol III. Dover, New York

    Google Scholar 

  • Vul E, Harris C, Winkielman P, Pashler H (2009) Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspect Psychol Sci 4:274–290

    Article  PubMed  Google Scholar 

  • Wade AR, Brewer AA, Rieger JW, Wandell BA (2002) Functional measurements of human ventral occipital cortex: retinotopy and colour. Philos Trans R Soc Lond 357:963–973

    Article  Google Scholar 

  • Wall MB, Walker R, Smith AT (2009) Functional imaging of the human superior colliculus: an optimised approach. NeuroImage 47:1620–1627

    Article  PubMed  Google Scholar 

  • Wandell BA (1999) Computational neuroimaging of human visual cortex. Annu Rev Neurosci 22:145–173

    Article  CAS  PubMed  Google Scholar 

  • Wandell BA (2008) What's in your mind? Nat Neurosci 11:384–385

    Article  CAS  PubMed  Google Scholar 

  • Wandell BA, Smirnakis SM (2009) Plasticity and stability of visual field maps in adult primary visual cortex. Nat Rev Neurosci 10:873–884

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wandell BA, Brewer AA, Dougherty RF (2005) Visual field map clusters in human cortex. Philos Trans R Soc Lond 360:693–707

    Article  Google Scholar 

  • Wandell BA, Dumoulin SO, Brewer AA (2006) Computational neuroimaging: color signal in the visual pathways. Neuro-Ophthalmol Jpn 23:324–343

    Google Scholar 

  • Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56:366–383

    Article  CAS  PubMed  Google Scholar 

  • Wandell BA, Dumoulin SO, Brewer AA (2009) Visual cortex in humans. In: Squire LR (ed) Encyclopedia of neuroscience. Academic, Oxford, pp 251–257

    Google Scholar 

  • Warnking J, Dojat M, Guerin-Dugue A, Delon-Martin C, Olympieff S, Richard N, Chehikian A, Segebarth C (2002) fMRI retinotopic mapping–step by step. Neuroimage 17:1665–1683

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Harner AM, Miyauchi S, Sasaki Y, Nielsen M, Palomo D, Mukai I (1998a) Task-dependent influences of attention on the activation of human primary visual cortex. Proc Nat Acad Sci U S A 95:11489–11492

    Article  CAS  Google Scholar 

  • Watanabe T, Sasaki Y, Miyauchi S, Putz B, Fujimaki N, Nielsen M, Takino R, Miyakawa S (1998b) Attention-regulated activity in human primary visual cortex. J Neurophysiol 79:2218–2221

    CAS  PubMed  Google Scholar 

  • Weiner KS, Grill-Spector K (2010) Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage 52:1559–1573

    Article  PubMed Central  PubMed  Google Scholar 

  • Weiskrantz L (1990) The Ferrier lecture, 1989. Outlooks for blindsight: explicit methodologies for implicit processes. Proc R Soc Lond Ser B, (Containing papers of a Biological character) 239:247–278

    Article  CAS  Google Scholar 

  • Wheatstone C (1838) Contributions to the physiology of vision—Part the First. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos Trans R Soc Lond 128:371–394

    Article  Google Scholar 

  • Wilson HR (2003) Computational evidence for a rivalry hierarchy in vision. Proc Nat Acad Sci U S A 100:14499–14503

    Article  CAS  Google Scholar 

  • Winawer J, Horiguchi H, Sayres RA, Amano K, Wandell BA (2010) Mapping hV4 and ventral occipital cortex: the venous eclipse. J Vision [electronic resource] 10:1–22

    Article  Google Scholar 

  • Wojciulik E, Kanwisher N, Driver J (1998) Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. J Neurophysiol 79:1574–1578

    CAS  PubMed  Google Scholar 

  • Wunderlich K, Schneider KA, Kastner S (2005) Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nat Neurosci 8:1595–1602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wurtz RH, Albano JE (1980) Visual-motor function of the primate superior colliculus. Annu Rev Neurosci 3:189–226

    Article  CAS  PubMed  Google Scholar 

  • Xu Y (2005) Revisiting the role of the fusiform face area in visual expertise. Cereb Cortex 15:1234–1242

    Article  PubMed  Google Scholar 

  • Yantis S (2008) The neural basis of selective attention: cortical sources and targets of attentional modulation. Curr Dir Psychol Sci 17:86–90

    Article  PubMed Central  PubMed  Google Scholar 

  • Yantis S, Schwarzbach J, Serences JT, Carlson RL, Steinmetz MA, Pekar JJ, Courtney SM (2002) Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci 5:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Yoshor D, Bosking WH, Ghose GM, Maunsell JH (2007) Receptive fields in human visual cortex mapped with surface electrodes. Cereb Cortex 17:2293–2302

    Article  PubMed  Google Scholar 

  • Young MP (1992) Objective analysis of the topological organization of the primate cortical visual system. Nature 358:152–155

    Article  CAS  PubMed  Google Scholar 

  • Zeki S (2003) Improbable areas in the visual brain. Trends Neurosci 26:23–26

    Article  CAS  PubMed  Google Scholar 

  • Zeki S, Ffytche DH (1998) The Riddoch syndrome: insights into the neurobiology of conscious vision. Brain 121(Pt 1):25–45

    Article  PubMed  Google Scholar 

  • Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649

    CAS  PubMed  Google Scholar 

  • Zhang N, Zhu XH, Zhang Y, Park JK, Chen W (2010) High-resolution fMRI mapping of ocular dominance layers in cat lateral geniculate nucleus. Neuroimage 50:1456–1463

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuiderbaan W, Harvey BM, Dumoulin SO (2012) Modeling center-surround configurations in population receptive fields using fMRI. J Vision [electronic resource] 12:10

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Kaoru Amano, Jan Brascamp, Ben Harvey, Michael Hoffmann, Chris Paffen, Bas Rokers, Mark Schira, Frans Verstraten, Jon Winawer, Wietske Zuiderbaan, and the editors for providing comments. S.D. was supported by Netherlands Organization for Scientific Research (NWO) Grants 452-08-008 and 433-09-223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge O. Dumoulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Dumoulin, S. (2015). Functional MRI of the Visual System. In: Uludag, K., Ugurbil, K., Berliner, L. (eds) fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7591-1_15

Download citation

Publish with us

Policies and ethics